Practical experiences with IR controlled supply terminals in dwellings and offices.

Ventilation is necessary to provide a good indoor air quality to occupants in office buildings but is however a major energy consumer. In that manner, ventilation in itself can contribute to much more than 50% of the energy consumption for heating in well insulated office buildings. Likewise, the general trend in standards to augment ventilation requirements would still increase its energy costs. Thus, it seems obvious that an intelligent control of ventilation in office building allows to obtain substantial reductions of energy consumption.

Novel methods of inducing air flows within buildings.

Water use is distributed throughout building structures. Energy used to pump the water to higher levels in the building is not currently recovered, and is dissipated by performing work on air in the ventilation system which is vented to the atmosphere, when the water is discharged into the drainage stack. This energy can be utilised productively, however, by strategically placing the air inlet for the drainage stack inside the building, thereby utilising the potential energy stored in the water to draw air through the building.

Natural ventilation design for a concert hall.

This paper describes the ventilation analysis undertaken during the design of a new music centre for which it was desired to avoid the use of air conditioning and conventional ducted mechanical ventilation. The main objective was to predict the thermal comfort of occupants in the centre's main auditorium during summertime performances. The analysis was done using computational fluid dynamics (CFD) and a dynamic thermal model.

Multizone calculations and measurements of air flows in dwellings.

A study of the reliability of systems by considering the ability of different systems to maintain a required air flow rate over time is included in a subtask of IEA Annex 27 "Evaluation and Demonstration of Domestic Ventilation Systems". Measurements and calculations were performed to determine the variation in ventilation rates due to variation in climate and variation in performance of the ventilation system. Dwellings with passive stack, mechanical exhaust and mechanical exhaust-supply ventilation, representative of the Swedish housing stock, were studied.

Modelling and assessing ventilation efficiency in an imperfectly mixed ventilated air space.

To ensure indoor air quality an efficient ventilation system should provide fresh air in those parts of a room where it is required. To assess whether the ventilation system fblfils the main objective, different definitions of local ventilation efficiency (the local mean age of air, the local ventilation rate, the local purging flow rate and the local air exchange rate) are reported in literature.

Measurement of ventilation air flows.

The common way to determine air infiltration, exfiltration and interzonal flows from tracer gas measurements in multizoned buildings is to rely upon the standard single or multizone model, Vc(t) = Qc(t)+p(t) . Here c, p are zonal tracer concentrations and injections, t is time and V, Q are the sought volumes and flows. This model may work well provided that all zones are sufficiently well mixed and all flows really are constant during the measurements. The latter can be doubtful in naturally ventilated buildings, especially as the measurements may require several hours.

Maximum velocity of return flow close to the floor in a ventilated room - experimental and numerical results.

The problem of sensation of draught in ventilated spaces is connected to inappropriate velocities in the occupied zone. In Scandinavia, velocities higher than 0.15 m/s are said to be an indicator of that occupants are likely to feel discomfort. Therefore knowledge of the flow field (both mean velocities and fluctuations) is necessary. Both experimental and numerical analysis of the flow field in a full scale room ventilated by a slot inlet, with two inlet Reynolds numbers 2440 and 7110, have been carried out .

Improve train tunnels. A dynamical ventilation model.

Train tunnels and subways are an interesting field of ventilation. Trains move air through tunnels at rates of 600 m³/s (over 2 x 10^6 m³ per hour) which is much more than flow rates in buildings. Air pressures can vary up to some 3000 Pa leading to air velocities in the range of 10 to 50 m/s. This can lead to unsafe situations and thermal discomfort. The development of high speed trains causes more concern for better tunnel design. Modern stations often house small shops and restaurants, that require lower air velocities for thermal comfort.

Full-scale measurements of indoor air flow.

Full scale measurements of air flow velocities, temperature, intensity of turbulence and air exchange rate are carried out on two rooms with different types of ventilation located in the department of architecture at Chalmers University of Technology. The measurements have shown that mixed ventilation gives variable mean flow velocities with a high risk of draught as compared to the room provided with displacement ventilation. Air exchange rate for the room with displacement ventilation is obtained from tracer gas monitor by employing decay and constant emission methods.

Experimental study of crack flow with varying pressure differentials.

Existing experimental techniques for calculating air flow through building cracks are usually based upon relationships derived from experimental studies employing relatively simple procedures. Typically, a fixed pressure difference, dP, is established across the crack of interest and then the air flow Q through the crack is determined. Most crack flow equations take the pressure differential dP to be steady-state. In reality, the wind forces which generate much of the driving pressures represent highly fluctuating signals.

Pages