AIVC - Air Infiltration and Ventilation Centre

Search form

EBC

You are here

Home

air leakage

Detailed numerical modelling of moist air flow through a complex airtightness defect

Mastering building airtightness is essential to meet the requirements of current and future building codes, not only for saving energy but also for ensuring moisture safety. Perfect airtightness is difficult to achieve: failures are often observed, due to bad design or poor workmanship. Some published investigations proved that leaking air mostly flows through porous material and thin air channels, due to material imperfections and construction tolerances.

Durable Airtightness in Single-Family Dwellings - Field Measurements and Analysis

Durability of the building envelope is important to new homes that are increasingly built with improved levels of airtightness. It is also important to weatherized homes such that energy savings from retrofit measures, such as air sealing, are persistent. This paper presents a comparison of air leakage measurements collected in November 2013 through March 2014, with two sets of prior data collected between 2001-2003 from 17 new homes located near Atlanta, GA, and 17 homes near Boise, ID that were weatherized in 2007-2008.

Large buildings airtightness measurements using ventilation systems

The airtightness test of the building is one of a few building envelope measurements used in practice, which is quantitative, not just qualitative as e.g. infrared thermography. The so-called blower-door test result may be a measure of the building design and construction quality and could also be used for the energy demand for heating and cooling analyses.

Durable airtightness in single-family dwellings: field measurements and analysis

This study presents a comparison of air leakage measurements collected recently (November 2013 to March 2014) with two sets of prior data collected between 2001-2003 from 17 new homes located near Atlanta, GA, and 17 homes near Boise, ID that were weatherized in 2007-2008. The purpose of the comparison is to determine if there are changes to the airtightness of building envelopes over time. Durability of building envelope is important to new homes that are increasingly built with improved levels of airtightness.

The need for structured air leakage databases in energy conservation in buildings policies

25 May 2012 | The need for structured air leakage databases in energy conservation in buildings policies

Prediction of air quality considering the concealed air leaks of houses

In this study, the characteristics of the movement of chemical compounds in the concealed spaces and indoor spaces in houses were investigated using building cut models and a simulation program Fresh2006. The equivalent leakage areas in the concealed spaces were measured using cut models of wooden structures: a common wooden structure, an improved wooden structure and a wooden (2 inch x 4 inch) stud structure.

French policy for shelter-in-place: Airtightness measurements on indoor rooms

Accidental dispersion of toxic gas clouds may occur around industrial platforms or during hazardous materials transportation. In case of such a toxic risk, the best protection strategy is to remain inside a building and seek refuge in an airtight room identified as “shelter” until the toxic cloud has finally been swept off. This strategy called “passive shelter-in-place” also includes obstructing all external openings and turning off all mechanical ventilation systems

Preliminary analysis of U.S residential air leakage database v.2011

Air leakage and other diagnostic measurements are being added to LBNL’s Residential Diagnostics Database (ResDB). We describe the sources of data that amount to more than 80,000 blower door measurements. We present summary statistics of selected parameters, such as floor area and year built. We compare the house characteristics of new additions to ResDB with prior data.

Effect of Party Wall Permeability on Estimations of Infiltration from Air Leakage

The importance of reducing adventitious infiltration in order to save energy is highlighted by the relevant building standards of many countries.  This operational infiltration is often inferred via the measurement of the air leakage rate at a pressure differential of 50 Pascals.  Some building codes, such as the UK’s Standard Assessment Procedure, assume a simple relationship between the air leakage rate and mean infiltration rate during the heating season, the so-called leakage-infiltration ratio, which is scaled to account for the physical and environmental properties of a dwelling.  The

Applying Large Datasets to Developing a Better Understanding of Air Leakage Measurement in Homes

Air tightness is an important property of building envelopes.  It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance.  Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ.  There are several methods for measuring air tightness that may result in different values and sometimes quite different uncertainties.

Pages