
Modelling the Steady-State Thermal Performance of Air Conditioning
Systems - the ZEBRA Approach.

P.G. MARSHALLSAY and R.E. LUXTON.

Department of Mechanical Engineering, The University of Adelaide, South Australia 5005.

1. Introduction.

Any air conditioning design problem may be satisfied by an almost infinite number of
solutions. An objective comparison of candidate solutions requires information regarding
many factors, the most important of which are the first cost of the system, the quality of
thermal environmental conditions according to relevant standards, and the running costs
associated with achieving those conditions. A system offering the lowest first cost may be
less than optimal if it fails to achieve specified zone thermal conditions, or if it does so only
at the expense of excessive expenditure of energy. Indeed, depending on the relative
weighting attached to the above factors, such a solution may be judged inadmissible. An
objective evaluation of candidate solutions in terms of thermal comfort and running costs
requires the prediction of system performance over a range of operating conditions. These
should include not only conditions involving peak sensible zone loads, but also a number of
critical part-load conditions which may in practice present a more challenging design
problem than do the peak load conditions.

Evaluation of system performance using the design tools currently available is difficult. One
of the more widely-used load calculation packages predicts coil-on and coil-off conditions
required to achieve specified zone conditions. This information is commonly used to select
coils of sufficient capacity for the task at hand. It is implicitly, and naively, assumed that the
selected coils will also provide the desired degree of dehumidification. The utility of this
method for predicting system performance is, at best, limited. Computer programmes for
predicting the performance of cooling coils for a specified set of operating conditions are
available from a number of equipment manufacturers. For the most part these are based on
the rating methods specified by ARI Standard 410-81, and while this method does suffer
from certain shortcomings (Sekhar et al., 1988), reasonably accurate predictions may be
expected under most circumstances. Steady-state zone conditions may be found using such a
programme in conjunction with an iterative graphical procedure which has been called “the
moisture staircase” (Luxton and Shaw, 1991). For a single zone system using a simple coil,
the process is tedious; with the additional complications of composite coils and multiple
zones, the task of producing a solution becomes excessively time-consuming and error-prone.

In view of the rudimentary nature of the design tools currently available, there is an
understandable reluctance on the part of designers to explore more than a very minimal
subset of the solutions possible for a given problem, or to evaluate the performance of
candidate solutions at other than peak load conditions for which there is usually a contractual
obligation. Occasionally one or two part-load conditions may be checked. Indeed, in a great
many cases first cost would seem to be the major, and sometimes the only criterion used to
select one system in preference to another. Given the widespread use of computers in design
offices throughout the world for applications as diverse as word-processing, inventory
control, duct design and load calculation, there is a surprising lack of software packages
available for the steady-state prediction of air conditioning system performance.

 1

The benefits of automating the design process have received some recognition in recent
years, and a number of computer-based air conditioning design packages are currently being
developed (Madjidi and Bauer, 1994). The ZEBRA software package has been developed
against a background of more than twenty years of research into the fundamentals of air
conditioning system operation and design methodology, and has been conceived as a tool
which will facilitate the activities of system selection and control system design and
optimization by adopting a holistic approach to the entire design specification and design
process. In essence, the software package is based on a system simulation engine which has
been established on a firm physical basis, augmented where appropriate with experimental
design data. The software has been structured strictly according to object-oriented design
principles, providing maximum flexibility in terms of the system configurations and
components which can be modelled now and in the future. The software system seeks to
integrate various aspects of current design practice, which would otherwise be performed
either manually or by using a disparate collection of computational design aids. As such, it
provides a basis for further automation of the design process through proposed linkages to
other software components, including expert systems, databases, load calculation packages
and CAD/CAM software.

The ZEBRA package has been under development for some years, and has been used in a
number of consulting projects and design studies. The ability to model efficiently the
performance of an air conditioning system over its entire operating range has provided the
basis for the development of a systematic and rational air conditioning design methodology
for life cycle operation. In addition, the process of designing and implementing the
computational model has led to the identification of shortcomings in our understanding of
certain aspects of system performance, and of ambiguities in the available experimental data.
These are being addressed and studies are proposed to compare the predictions of the model
with the operating characteristics of installed plant.

2. Overall Structure.

A number of HVAC simulation tools have been developed over the last twenty years, for the
most part as components of comprehensive building energy analysis codes, such as ESP
(Clarke, 1985), BLAST (BLAST Support Office, 1991) and BUNYIP (Moller and
Wooldridge, 1985). While each is appropriate for the purpose for which they were designed,
it is the authors’ contention that these software packages do not adequately address the needs
of the audience identified above. There are three major reasons for this:

1. It has been the authors’ experience with some such codes that the degree of rigour

applied to modelling plant components does not match that applied to modelling the
building envelope, and while the plant model may be adequate to estimate overall
energy consumption, it seldom provides other than a poor estimate of plant
psychrometric performance.

2. Even if we assume that the plant simulation has been based upon a physically correct

model, the close coupling between the building and plant simulation components of
the model requires that both components be simulated simultaneously. This limits the

 2

user’s flexibility in specifying test load sequences, and renders objective comparison
of plant design solutions difficult and tedious.

3. Many of the older codes limit the plant configuration options available to the user.

While the scope of many of the newer codes such as SPARK (Buhl et al., 1993), and
EKS (Tang and Clarke, 1993) do not suffer from this shortcoming, as dynamic models
they are still inherently tied to a building simulation model.

In contrast to the above, ZEBRA models the steady-state performance of a HVAC systemP

1
P,

and thus effects a decoupling between the plant model and the building envelope model.
This decoupling is justified on the grounds that under normal operating conditions the time
scale describing the plant dynamics will be considerably shorter than that associated with the
building envelopeP

2
P. Having effected this decoupling, it becomes possible to reduce the load

space over which a system configuration is to be evaluated to a set of critical loads, such as
may be determined by the design locus (Koptchev and Luxton, 1996), rather than requiring
evaluation over a comprehensive time sequence.

ZEBRA is also distinguished from most other extant codes in that it has been structured from
the point of view of the HVAC system designer rather than that of the building energy
analyst. Accordingly, considerable emphasis has been placed upon modelling the
performance of the air-side of the system, and particularly of the all-important but frequently
neglected dehumidifier coilP

3
P. The model in its present form is not all-inclusive. For instance

there is no chiller model and the choice of coolants is restricted to chilled water. The
software is however structured in such a way as to facilitate extension of the range of
applicability of the model, and work is in progress to develop and integrate a number of new
features.

The projected structure of the ZEBRA package in its entirety is as shown in figure 1. At the
heart of the package is the Zebra Kernel, which is in essence the engine of the simulation
system. It contains the data structures and associated algorithms required to represent the
various plant components and to simulate plant response to changes in operating conditions.
The primary channel for user interaction with the Zebra Kernel is by means of a closely-
coupled graphical user interface which provides access to a range of system services, the
most important of these being:

P

1
P The ASHRAE Secondary Systems Toolkit also models the steady-state performance of

systems components such as fans and heat exchangers. However, this toolkit is configured as
a discrete collection of FORTRAN subroutines modelling the performance characteristics of
specific components; the user is left with the task of incorporating the components into a
system model.

P

2
P This contention is borne out by the authors’ laboratory and professional experience.

P

3
P The model used has been derived upon the basis of a rigorous analysis of the processes

occurring within the cooling coil as determined by comprehensive laboratory testing.

 3

Figure 1. Architecture of the ZEBRA software package.

 i. Specification and editing of the model of the HVAC system and its associated control
strategies. The system model may be archived to disc between sessions.

 ii. Specification of zone loads and ambient conditions.
iii. Initiation of a system simulation run using the currently specified system

configuration and load conditions.
 iv. Generation and printing of reports using a report generator and printing facilities

hosted within the Zebra Kernel itself.

The capabilities listed above provide a basic level of functionality, which is augmented by
two further complementary features:

 i. The ability to run a system simulation sequence using a pre-programmed sequence of

zone loads and ambient conditions as specified in a metafile. The sequence might for
instance represent the load conditions pertaining at regular intervals over a period of
operation, or might alternatively represent a standard test sequence devised by the
user to compare candidate design solutions for a particular problem.

 ii. The ability to store selected data items from consecutive runs to a log file for further
processing, which might include off-line report generation, graphical display, or
conversion to formats suitable for input to spreadsheet and statistical analysis
packages.

The Zebra Kernel is supported by a number of coordinating components, which either exist at
the present time or are projected for future implementation. These include:

 4

 i. UDatabases.U The Zebra system interacts with a number of databases, which essentially
fall into two categories:

 a. The project database. This is currently restricted in scope, but in the
longer term will provide an indexed repository for a wide range of data
relating to each project.

 b. Global databases contain information which is available to all projects
based on need. These include a set of databases containing the characteristics
of various equipment items, such as fans, filters and coils, and a climate
database which is currently being developed as a collaborative venture
between the University of Adelaide and the Bureau of Meteorology.

 ii. UExpert System.U The Zebra Kernel in itself is a system simulation tool which may be
used in conjunction with an expert system to automate much of the HVAC system
design process. The eventual aim is to provide a tool which will guide the user
through the initial choice of a system configuration to the detailed selection of
equipment components and control strategies to produce a near-optimal design
solution. This is necessarily a long-term aim since we do not believe the requisite
expertise currently exists; it will be developed by systematic exploration of design
spaces using tools such as Zebra. The shorter term aim is to automate specific facets
of the design process on an incremental basis.

iii. ULoad Calculation Programme.U Interaction with a load calculation programme is
desirable both as a convenience when dealing with time sequences of load conditions,
and more importantly, to investigate system performance when zone dry-bulb
temperature conditions vary, either by design or as a result of systems with inadequate
capacity being specified. Few if any of the load calculation codes in common use
provide an interactive capability. The possibility of interfacing with one or more
available codes is under investigation.

The discussion which follows will focus on the structure of the system model used by the
Zebra Kernel.

3. Design Philosophy.

The Zebra Kernel is a complex software system designed to serve a diverse body of users
over a comparatively long life cycle. With this in mind, factors which have been of major
importance in determining the philosophy underpinning the design of the package are:

 i. User access to the model. In particular, it must be borne in mind that the design

process in most cases proceeds from the general to the specific. Thus, it is
appropriate that the designer should be able as far as is appropriate to specify generic
equipment items having default operating behaviour during the early stages of the
design cycle. The specificity of the model can subsequently be refined as concrete
design decisions are made.

 ii. Maintainability of the programme structure and software components.
iii. Extensibility of the software system to incorporate additional features, and of the

HVAC system model to represent additional configurations and equipment items.

The package has been designed to meet the above criteria using object-oriented design
techniques (Booch, 1994; Jacobson et al., 1992) and is programmed in the C++ language

 5

(Stroustrup, 1991) which provides support for object-oriented programming. In this
approach, components of the model are regarded as objects, each of which is an instance of a
specific class. A class contains data members which specify the state of objects of that class,
and member functions which specify object behaviour. Thus, the components in a model of a
refrigeration cycle might be represented by a base class Component which, in its simplest
form specifies the state of the corresponding objects by data members representing:

 The state of the working fluid at entry to the component;
 The state of the working fluid leaving the component;
 The mass flow rate of the working fluid through the component;
 The working fluid itself (an object of another class)

and specifies the behaviour of the objects by an abstract function Process which takes the
object through an (as yet undefined) thermodynamic process. The inheritance mechanism
provides a means to augment and refine the behaviour of derived classes, while retaining
access to the attributes of the base class. Thus, to model an ideal vapour refrigeration cycle,
one needs to derive four classes from base class Component, each of which redefines
member function Process to model the appropriate thermodynamic process:

 Class Compressor: function Process performs isentropic compression;
 Class Condenser: function Process performs isobaric condensation;
 Class ExpansionDevice: function Process performs isentropic expansion;
 Class Evaporator: function Process performs isobaric evaporation.

The process may be further refined by deriving an additional layer of classes from the above.
Thus, classes ReciprocatingCompressor, ScrewCompressor and
CentrifugalCompressor might be derived from class Compressor, each redefining
function Process to account for departures from ideal behaviour, and providing additional
data members to describe the characteristics of a specific compressor type. Structuring
software entities in a hierarchy as described offers benefits for both the user and the
programmer. From the point of view of the user, it provides an opportunity to start from a set
of generic components, and to refine the design incrementally while concentrating on one
component at a time. From the programmer’s point of view, it provides a structure which is
readily extended as the need arises, and which facilitates re-use of existing code; member
function Process of class Compressor remains accessible to classes higher in the hierarchy,
and may be invoked to provide an initial estimate in an iterative procedure to account for
departures from ideal behaviour.

4. Programme Structure.

Within an object-oriented framework, a complex system may be modelled by selecting a
suitable set of coordinating classes, and defining the operations whereby they interact. The
core class categories in the Zebra model are shown in figure 2, and essentially perform the
following functions:

 6

 i. An object of class HVACProject
provides the means by which all other
components of the package access the
components of the HVAC system
model. There is one and only one
object of this class for each invocation
of ZEBRA. This object maintains
indexes to the zones and systems in the
model, and processes all requests to edit
and query the state of the components,
and to run simulations.

 ii. Each zone within the project is
represented by an object of class Zone,
which specifies the zone loads, and the
status of the thermostat and humidistat
serving the zone (Enabled/Disabled;
On/Off; set point). Zones may or may
not be conditioned.

Figure 2. Core class categories required to
imlement the air conditioning system model.

iii. Objects of class System, or more properly one of its subclasses, each of which
maintains a one-to-one relationship with an object of class AHU, which provides a
model representation of a primary air-handling unit, each of which serves one or more
zones or, in the case of central outdoor air treatment plants, one or more secondary
units (themselves objects of class AHU). Subclasses of class System provide a
common interface, specifying a range of operations including initiation of a simulation
run, generation of a report describing current system state, and creation and editing of
a system model of the appropriate type. Specialisation of the base class to a specific
system type is determined by the implementation of the derived class. Similarly, class
AHU provides an abstract representation of an air handling unit which may be adapted
to provide a concrete representation of a specific type by appropriate specification of
equipment subsystems and control strategies. This aspect is obviously of central
importance to our modelling strategy, and will be taken up again at a later stage.

The above classes thus provide a generalised framework which will accommodate a wide
range of equipment types and system configurations.

5. Algorithms for System Simulation.

Luxton and Shaw (1991) focussed attention on the often overlooked "thermodynamic
requirement that if equilibrium is to be achieved in a system the rate at which heat and
moisture are removed by the dehumidifier coil must equal the rate at which they are added to
the conditioned space". For a single-zone air conditioning system this implies that the
equilibrium condition within the zone will be uniquely determined provided

 i. The load in the zone remains constant.
 ii. The condition within the zone is constrained to lie on some locus on the psychrometric

chart. Most often this locus will be established by thermostatic control so the
constrained locus becomes a line of constant dry-bulb temperature.

iii. The cooling coil has sufficient capacity to offset the sensible load in the zone.

 7

A further constraint may be introduced into the system provided an extra degree-of-freedom is
also introduced. A practical example, and the only one with which we will be concerned in
the present study, is that of using reheat to control the relative humidity within a zone so that
it remains below a controlled upper limit. As a corollary to the above, we note that if the
conditions within the zone do not lie at the equilibrium point, then the action of the control
system will be to drive the zone condition towards its equilibrium point.

If the zone approaches its equilibrium condition along the locus determined by a line of
constant dry-bulb temperature, the process is the moisture staircase phenomenon mentioned
in the Introduction. This process has been graphically illustrated by Sekhar (1990), and by
Luxton and Shaw (1991). It can be demonstrated for a single-zone system of conventional
configuration by assuming a zone relative humidity, and plotting on a psychrometric chart the
zone condition which satisfies the assumed relative humidity and the desired dry-bulb
temperature. This point is used as a starting point, and the various processes occurring within
an air conditioning system are plotted on a psychrometric chart. The return air is mixed with
the outdoor air in the specified proportions, the coil condition curve plotted, and the coil exit
condition required to offset the zone load is located. Finally, the load ratio line is plotted, thus
determining a new estimate for the zone condition. In almost all cases, this will differ from
the point originally chosen, although still lying on the locus. If the process is repeated several
times, using the last estimate of the zone condition as the starting point for each successive
construction, the sequence of points generated will be found to approach an equilibrium point
monotonically. The equilibrium point is insensitive to the initial estimate.

The procedure outlined above is tedious for a single zone, even if a coil simulation
programme is available. The complexity introduced by multiple zones renders hand
computation totally impractical for most purposes. The problem is, however, amenable to a
computerized solution. In designing the required algorithms, it is useful to decompose the
problem into two nested loops:

 i. The inner loop performs one step of the moisture staircase simulation, using the

current estimate of the zone condition(s) to derive an updated estimate.
 ii. Within the outer loop, a programmed sequence of moisture staircase steps is

performed, iteration continuing until the sequence converges to the desired equilibrium
condition.

The basic scheme thus defined is capable of modelling a wide range of system configurations,
with appropriate perturbations. Some of the considerations in programming the algorithm in
its more basic forms will be considered below.
5.1. The Outer Loop.

The outer loop is most easily programmed using the method of successive substitution
(Stoecker, 1989), in direct emulation of the hand computation procedure described above.
Unfortunately, this method suffers from two drawbacks; it is usually slow to converge and
often it may not converge at all, preferring to oscillate between two states which straddle the
true solution point. An alternative solution procedure is required which improves upon this
most basic and intuitive method in terms of both efficiency and robustness. Such a procedure
may readily be derived for a single-zone system. Let the equilibrium condition of the zone be
defined by its dry-bulb temperature (t) and its humidity ratio (W), of which t is fixed by
thermostatic control, and W is to be found. Let ~Wa be an initial estimate for W, and execute

 8

one iteration of the inner loop using this as a starting point such that an updated estimate ~Wa
′

is produced. Assume that the value is such that ~ ~W Wa > a
′ . Now let ~ ~W Wb > a be a second

estimate which, upon completion of one iteration of the inner loop, produces an updated
estimate ~Wb

′ such that . Clearly then ~W Wb
′ < ~

b

 ~ ~ .W W Wa b< < (1)

To find the equilibrium condition for the single-zone case, we then wish to find some estimate

of W such that ~W

f W W W(~) ~ ~ .= − ′ = 0 (2)

Provided we can write a function which will take as input, and return ~W f W(~) , equation (2)
can be solved efficiently using a root-finding procedure. The method generalises to the
multizone case if we observe that at equilibrium equation (2) must be satisfied at every point
in the system. In the more general case it is convenient to take to be the supply-air
humidity ratio.

~W

5.2. The Inner Loop.

The purpose of the inner loop is to calculate the objective function f W(~) , as defined in
equation (2), for some estimate of the supply-air humidity ratio. In other words, we aim to
take a parcel of air at a specified supply-air condition (t,) through one circuit of the air
conditioning process, and find the condition of the parcel on completion of the circuit. For a
multizone all-air system of conventional configuration, the procedure is, in outline, as follows:

~W

 i. Assuming that each zone will operate at its thermostat set-point, the humidity ratio

corresponding to the supply-air humidity ratio is calculated. Two points need to be
taken into consideration during this process:

 a. The supply-air duct temperature gain for each zone needs to be

accounted for.

 b. For a VAV system, the supply-air temperature is controlled, and is thus

known; for a CAV system it needs to be calculated at this stage. To do this, we
calculate the supply-air temperature required by each zone in the absence
of all other zones. Then, the supply-air temperature for the system,

t SA i,

t tSA i SA i= min ., (3)

 For all zones other than those for which t tSA SA= , reheat must be supplied to

achieve the desired set-point temperature.

 9

 ii. The return-air condition is found by incrementing the temperature of the return-air
stream from each zone by its appropriate return-air duct temperature rise, and
performing psychrometric mixing of all the return-air streams.

iii. The coil-on condition is determined by mixing the return-air and outdoor-air streams

psychrometrically in the ratio of their respective mass flow rates.

 iv. Let t be the target coil-off dry-bulb temperature, defined as t etarg

t t tt et SA fanarg .= − ∆ (4)

where is the fan temperature gain. Then, the coil chilled water flow rate is
adjusted until the target coil-off temperature is achieved; the coil-off condition
determines the revised supply-air humidity ratio (

∆t fan

~ ′W in equation (2)).

5.3. Handling Humidity Constraints.

The procedure described above will provide a solution for the situation in which no humidity
constraints have been violated. A humidity constraint will have been violated if the
humidistat for a zone is enabled and on, and if the relative humidity in the zone exceeds its
upper set point. Such a constraint is said to be active. If a constraint has been violated, the
problem can be rectified by applying an additional sensible load (reheat) to the supply air,
forcing the cooling coil to overcool the air to the dew-point temperature required to satisfy the
constraint. Having obtained a solution for the unconstrained problem, a check is carried out to
determine whether any humidity constraints have been violated. An algorithm to solve the
constrained problem follows if we observe:

 i. The solution to the constrained problem will always require a greater flow rate of

chilled water than the corresponding unconstrained problem.

 ii. If we identify a zone i for which the magnitude of the humidity ratio violation

() exceeds that of any other zone served by the same supply-air
connector for the unconstrained case, then all constraints will be satisfied with
minimum expenditure of energy when the constraint for zone i is exactly satisfied
().

∆W W Wi i i s= − , et

∆Wi = 0

iii. There is one and only one supply-air humidity ratio which will exactly satisfy an

active humidity constraint.

Having set the condition for some zone i in step (ii) above, the supply-air condition, and
consequently the conditions for all other zones are established, and can be found for either
VAV or CAV operation using an appropriate algorithm. The steps which follow are
essentially those described for the inner loop of the unconstrained case above, except that now
we adjust the chilled water flow rate to achieve a target coil-off humidity ratio, W . Then,
the required reheat,

t etarg

∆ ∆t t t treheat SA fan coil on= − − − . (5)

 10

5.4. Generalisation.

The preceding sections describe in outline a modelling procedure which will simulate the
steady-state thermal performance of all-air systems of conventional design. The methodology
may readily be extended to cover a wide range of system types. Among the additional system
types for which solutions have been developed are the following:

 i. Blow-through systems having multiple cooling coils, each independently controlled,

but sharing a common return-air path.
 ii. Systems based on the high-driving potential (HDP) principle (Shaw et al., 1993), in

which the outdoor-air and return-air streams are separately treated through individual
cooling coils.

iii. Induction systems.

The task of incorporating new system types will be facilitated, and reuse of existing and tested
code will be maximised if close attention is paid to selecting a suitable set of classes, and
distributing the desired functionality in a appropriate manner. As a general principle:

 i. Functionality should be placed in a class representing the component or subsystem

which will perform the associated action, and
 ii. Where a candidate class forms part of an inheritance hierarchy (as will generally be

the case), a specific item of functionality should be placed as low in the hierarchy as is
consistent with the structure of the hierarchy. Distribution of functionality through an
inheritance hierarchy will in fact normally be a major consideration in determining the
architecture of the hierarchy.

These issues will be pursued further in the following section.

6. Modelling of System Components.

It will be obvious from the foregoing discussion, and from section 4, that the manner in which
class AHU and its component classes have been structured, and functionality distributed
among them, has been of central importance to the entire software design process. The
structuring of these classes will be described in the following. As a preliminary step in this
discussion, it is instructive to consider the range of coil configurations which are possible for
a fan-powered air-handling unit. The configurations which are supported by Zebra (the range
is considered to be exhaustive) are shown in figure 3. To model the desired range of
configurations, it is convenient to consider an air-handling unit to be constructed from a set of
subsystems:

 i. The outdoor-air subsystem;

 11

Figure 3. Available cooling coil configurations for an air handling unit. In the above; O
signifies outdoor air (which may have been pre-treated); R signifies return air; and S
signifies supply air.

 ii. The return-air subsystem;
iii. The supply-air subsystem;
 iv. The coil subsystem;
 v. The fan subsystem.

Several points are apparent from figure 3:

 i. Some system configurations do not use all of the above types of subsystem. In

particular, ventilation only configurations ((b) and (f), and central pre-treatment units
which share this general configuration) will not have a return-air subsystem.

 ii. In most of the configurations shown, the coil subsystem (plural for all-air HDP units)
is associated with either the outdoor-air subsystem, the return-air subsystem or the
supply-air subsystem. Only for the conventional configuration (d) is it not possible to
associate the coil subsystem with one of the other subsystems.

 12

Figure 4. Directed Acyclic Graph showing the inheritance hierarchy for class SubSystem and
its derived classes.

iii. For primary units, it is convenient for the structure representing the supply-air

subsystem to maintain a list of the secondary units served by that subsystem; for
secondary units, the supply-air subsystem should maintain a list of the zones served.

To provide the desired functionality, outdoor-air subsystems, return-air subsystems and supply-
air subsystems are all members of an inheritance hierarchy which has class SubSystem as its
common base class. The complete hierarchy is shown in figure 4, to which the following notes
refer:

 i. Class SubSystem provides a basic level of functionality. It provides member

functions to access the air state at entry to and exit from the subsystem, the air pressure
drop across the subsystem and the mass flow rate of air through the subsystem, together
with (possibly null) pointers to a filter and a reheat device. The class representing
reheat devices (class ReheatDevice) provides a member function to find the reheat
necessary to provide a target exit dry-bulb temperature.

 ii. Class CWSubSystem adds support for a chilled-water coil subsystem to the base
structure. The coil subsystem is modelled by an object of class
CWCoilControlStructure, of which more will be said later. The implementation of
this class is fairly complex, and provides options for 2- and 4-pipe installations, with the
possibility of shared or separate cooling and heating coils in the latter case, and the
option of using a separate hot water coil for reheat.

iii. Class SASubSystem is a base class for supply-air subsystems, and adds a supply-air
thermostat to the basic implementation of class SubSystem. Specialised versions of
the class for primary and secondary units are provided by derived classes
SAPrimarySubSystem and SASecondarySubSystem respectively, from which are
derived classes CWSAPrimarySubSystem and CWSASecondarySubSystem for
use in blow-through units. Note that these latter classes provide an example of multiple
inheritance.

 13

6.1. The Coil Subsystem.

In essence, the coil subsystem comprises two major components, a coil bank and a control
valve, both of which are implemented as objects of an appropriate class. Class CoilBank (and
CWCoilBank, its specialisation to chilled-water coils) provides a means of representing and
simulating the performance of coils of arbitrary complexity using simple coil components as
the basic building blocks, and of selectively deactivating or bypassing certain circuits in the
coil. The class provides member functions to solve the following problems (full details of the
algorithms used will be found in Marshallsay, 1996):

 i. Sensible and latent cooling capacities and state of the working fluids leaving the coil

bank, if the mass flow rates and conditions of the fluids at entry to the coil bank have
been specified.

 ii. Water pressure drop through the coil bank.
iii. Air pressure drop across the coil bank.

Incorporating the coil bank and control valve structures into class CWCoilStructure has
enabled the implementation of member functions to solve two additional problems:

 i. To find the valve setting (chilled water flow rate) to achieve a target coil-off

temperature for the coil bank, and
 ii. To find the valve setting to achieve a target coil-off humidity ratio for the coil bank.

Placement of facilities such as these at this level in the structure is a key factor in the extension
of the programme to handle additional system types.

6.2. The Fan Subsystem.

The major classes required to model the fan subsystem are shown in figure 5. Class FanUnit is
central to the modelling for this subsystem and, in the absence of more detailed information an
instance of this class references an object of base class Fan, which specifies a default
efficiency and fan temperature rise for a ‘generic’ fan. The user may provide more specific
information, and select a fan of a particular type (axial or centrifugal), in which case a fan
characteristic (stored as a set of cubic spline coefficients) will also be selected from the fan
database. In this latter case, the user may also elect to specify fan system effects at the fan inlet
and outlet. The actions taken within the modelling process depend on the information
available:

 i. If the pressure rise across the fan is not known, the default temperature rise will be

used.
 ii. If the pressure rise is known or can be calculated, but no fan characteristic is available,

the default fan efficiency is used in calculating the fan temperature rise.
iii. If the fan characteristic is also available, the operating point if the fan is found, and the

efficiency thus found is used to calculate the fan temperature rise.

A software component to model the thermal and pressure drop characteristics of a duct system
is currently being developed (refer Marshallsay, 1996).

 14

Figure 5. Major classes involved in modelling a fan sub-system.

7. Air Handling Units.

The air handling unit, represented by class AHU and its derived classes, provides a framework
within which the system modelling algorithms described in section 5 may be implemented.
Systems using chilled water as a coolant are modelled with a considerable degree of generality
by the hierarchy of classes shown in figure 6. In line with the philosophy enunciated in section
5.4, most of the functionality within this hierarchy is contained within classes AHU and
CWAHU, which respectively provide a general base class for all air handling units, and its
specialisation to units using chilled water. Class AHU contains member variables representing:

a. An outdoor air sub-system (OASys), this being a pointer to a variable of class

SubSystem, or its derived class CWSubSystem.
b. A return air sub-system (RASys), this being a pointer to a variable of class

SubSystem, or its derived class CWSubSystem.
c. A vector of pointers (SASys) to variables of class SASubSystem, or classes derived

from class SASubSystem, representing the supply air sub-systemsP

4
P.

d. A pointer (f) to a variable of class FanUnit.

P

4
P Implementing a vector of pointers rather than a single pointer for this variable provides an

opportunity to model a unit having several supply air sub-systems, each with its own cooling
coils, a situation which is sometimes encountered in blow-through configurations.

 15

Figure 6. Directed Acyclic Graph showing the inheritance hierarchy for class AHU and its
derived classes.

These are augmented with a set of member functions, mainly of a low-levelP

5
P nature.

In addition to the pointer variables declared in the base class, class CWAHU provides a pointer
variable (CoilSys) to a referencing a variable of class CWSubSystem. The polymorphicP

6
P

nature of the pointer variables declared within class CWAHU and its base class provides a
general mechanism for representing chilled water air handling units of fairly general
configuration (refer to figure 3). Thus, for an all-air system, the air handling unit would be
represented by:

 i. For a draw-through unit of conventional configuration (figure 3d):
 OASys references a variable of class SubSystem;

RASys references a variable of class SubSystem (or is null for a unit providing 100%
ventilation (figure 3f));
CoilSys references a variable of class CWSubSystem;
SASys contains a single pointer referencing a variable of class
SASecondarySubSystem;
f references a variable of class FanUnitP

7
P

 ii. For a unit of HDP configuration (figure 3e):
 OASys references a variable of class CWSubSystem;

RASys references a variable of class CWSubSystem;
CoilSys is null;
SASys contains a single pointer referencing a variable of class
SASecondarySubSystem;
f references a variable of class FanUnitP

8
P

P

5
P The main exception being a function which provides a framework for implementing the

moisture staircase iteration for a derived class specifying a particular coolant and
configuration.

P

6
P This refers to the ability of a pointer to reference in a transparent manner a variable of the

declared class, or of one of its derived classes. Note in this connection that any of these
pointers may be UnullU.

P

7
P Variable f will in general only be null in the representation of a terminal unit in an induction

system.

 16

The solution algorithms described in section 5 are implemented as member functions of class
CWAHU. Classes CWAHUPrimary and CWAHUSecondary provide relatively minor
extensions of the base classes to represent the primary or secondary units respectively in an air-
water system.

8. Summary.

The ZEBRA package has been conceived as a tool which will assist the HVAC designer in
understanding the processes occurring within an air conditioning system, and consequently will
provide direction in the search for a near-optimal design solution. In this it differs from most if
not all extant plant simulation codes in that it has been designed from the outset with the aim of
satisfying the specific needs of the HVAC system designer, rather than the needs of the user
whose primary interest is in analysing building energy consumption. The package has been
used extensively within the University of Adelaide for design studies, which in some cases
have been of a conceptual nature, and in others have been associated with professional design
consultancies. The understanding which has accrued from these studies has played a vital rôle
in stimulating technical innovation, highlighting deficiencies in current understanding of
various aspects of plant and system performance, and in providing guidance in the development
and automation of methodologies for optimal design. Like most of the codes cited in section 2,
Zebra is constantly undergoing a process of evolution. Specific issues being addressed in the
development process include:

 iii. Verification of the range of applicability of the algorithms used, and development of

new algorithms to further broaden the range of applicability of the model.
 iv. Extension of the modelling process to cover a broader range of equipment.
 v. Facilitation of user access to the model through improvements to the user interface, and

in the range of tools provided to the user.
 vi. Closer integration with the operating environment, and with coordinating processes, as

described in section 2.

The above not withstanding, the package has now reached a certain degree of maturity, and it is
intended to make it more widely available in the near future.

P

8
P Variable f will in general only be null in the representation of a terminal unit in an induction

system.

 17

References.

BLAST Support Office, 1991, BLAST User Reference, Volume 1 and 2, Department of

Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign,
Urbana, Il.

Booch, G., 1994, Object-Oriented Analysis and Design With Applications, 2nd Ed., Benjamin-
Cummings, Redwood City, CA.

Buhl, W.F., Erdem, A.E., Winkelmann, F.C. and Sowell, E.F., 1993, Recent improvements
in SPARK: strong component decomposition, multivalued objects, and graphical
interface, Proc. IBPSA 3P

rd
P International Conf., Adelaide, Aug. 16-18, 1993.

Clarke, J.A., 1985, Energy Simulation in Buildings, Adam Hilger, Bristol.
Jacobson, I., Christerson, M., Jonsson, P. and Övergaard, G., 1992, Object-Oriented

Software Engineering: A Use Case Driven Approach, Addison-Wesley, Reading, MA.
Koptchev, I.D. and Luxton, R.E., 1996, A new look at air conditioning design, Proc. Joint

Meeting of Commissions E1, E2, B1 and B2, IIR, Melbourne, Feb. 11-14, 1996.
Luxton, R.E. and Shaw, A., 1991, Processes within a dehumidifier coil and their

consequences in air-conditioning design, Proc. 3rd ASME-JSME Thermal
Engineering Joint Conference, Reno, Nevada, 17-22 March.

Madjidi, M. and Bauer, M., 1995, How to overcome the HVAC simulation obstacles, Proc.
4th International Conference, International Building Performance Simulation
Association, Madison.

Marshallsay, P.G., 1996, A Methodology for Modelling the Steady-State Thermal
Performance of Air Conditioning Systems, Ph.D. Thesis, The University of Adelaide.

Moller, S.K. and Wooldridge, M.J., 1985, User’s Guide for the Computer Program BUNYIP:
Building Energy Investigation Package (Version 2.0), CSIRO Division of Energy
Technology, Technical Report TR-6.

Sekhar, S.C., 1990, Life Cycle Design of Dehumidifiers in Air Conditioning, Ph.D. Thesis,
The University of Adelaide.

Sekhar, S.C., Luxton, R.E. and Shaw, A., 1988, Some problems in the rating of cooling coils
- ARI Standard 410 revisited, Proc. International Congress of Commissioners of the
International Institute of Refrigeration, Brisbane, September.

Shaw, A., Luxton, R.E. and Marshallsay, P.G., 1993, Integration of dehumidification into
life-cycle system design, Proc. ASHRAE Conference on Building Design, Technology
and Occupant Well-being in Temperate Climates, Brussels, 17-19 February.

Stoecker, W.F., 1989, Design of Thermal Systems, 3rd Ed., McGraw-Hill, New York.
Stroustrup, B., 1991, The C++ Programming Language, 2nd Ed., Addison-Wesley, Reading,

MA.
Tang, D., and Clarke, J.A., 1993, Application of the object oriented programming paradigm to

building plant system modelling, Proc. IBPSA 3P

rd
P International Conf., Adelaide, Aug.

16-18, 1993.

 18

