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ABSTRACT 
 
The objective of this work is to train an artificial neural network (ANN) to learn to predict 
the required heating load of buildings with the minimum of input data. An ANN has been 
trained based on 250 known cases of heating load, varying from very small rooms (1-2 mP

2
P) 

to large spaces of 100 mP

2
P floor area. The type of rooms varied from small toilets to large 

classroom halls, while the room temperatures varied from 18°C to 23°C. In addition to the 
above, an attempt was made to use a large variety of room characteristics. In this way the 
network was trained to accept and handle a number of unusual cases. The data presented as 
input were, the areas of windows, walls, partitions and floors, the type of windows and 
walls, the classification on whether the space has roof or ceiling, and the design room 
temperature. The network output is the heating load. Preliminary results on the training of 
the network showed that the accuracy of the prediction could be improved by grouping the 
input data into two categories, one with spaces of floor areas up to 7 mP

2
P and another with 

floor areas from 7 to 100 mP

2
P. The statistical RP

2
P-value for the training data set was equal to 

0.988 for the first case and 0.999 for the second. Unknown data were subsequently used to 
investigate the accuracy of prediction. Predictions within 10% for the first group and 9% 
for the second were obtained. These results indicate that the proposed method can 
successfully be used for the estimation of the heating load of a building. The advantages of 
this approach compared to the conventional algorithmic methods are (i) the speed of 
calculation, (ii) the simplicity, and (iii) the capacity of the network to learn from examples 
and thus gradually improve its performance. This is done by embedding experiential 
knowledge in the network and thus the appropriate U-values are considered. Such an 
approach is very useful for countries where accurate thermal properties of building 
materials are not readily available. 
 
 
1.  INTRODUCTION  
 
The cornerstone of a successful design of a heating system is the accurate estimation of the 
building heating load. A number of commercial software programs are currently available 
for the estimation of the heating load of buildings (e.g. ASHRAE Code, Carrier E20-II). 
These programs basically perform multiplications between the areas of the various 
building envelope components with the corresponding U-values and the effective 
temperature difference (fabric losses). The results of these multiplications are added to 
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obtain the space heating load. To this a 10% safety factor is usually added. The building 
envelope components usually considered are the external walls, windows, partitions, 
floors, ceilings or roofs, and the infiltration losses. 
 
Commercial load estimation programs are generally time consuming, especially when it 
comes to identifying the proper U-values of the various building components. Furthermore 
the cost of these programs could be prohibitively high for small consulting offices. There is 
therefore, a need for alternative approaches to this task. The recently developed technology 
of artificial neural networks (ANN) could offer such an alternative approach. 
  
Neural networks are widely accepted as a technology offering an alternative way to tackle 
complex and ill specified problems. They can learn from examples, are fault tolerant in the 
sense that they are able to handle noisy and incomplete data, are able to deal with non-
linear problems, and once trained can perform prediction and generalization at very high 
speed. The power of neural networks in modeling complex mappings and in system 
identification has been demonstrated (Kohonen, 1984; Narendra & Parthasarathi, 1990; Ito, 
1992). This work encouraged many researchers to explore the possibility of using neural 
network models in real world applications such as in control systems, in classification, and 
modeling complex process transformations (Kah et al., 1995; Kreider and Wang, 1995; 
Pattichis et al., 1995; Curtiss et al., 1995; Kalogirou et al., 1996a and 1996b). 
 
The aim of this study is to investigate the suitability of neural networks as tools for the 
estimation of the heating load of buildings using the minimum possible set of input data. 
This will facilitate the work of design engineers in the field. This method is more useful, 
for small countries, like Cyprus, where local building material thermal properties are not 
accurately known. Property values taken from published references are not always valid 
for the materials used locally. This is so because although the same material might be 
specified, the composition and manufacturing method of the materials could be different. 
 
The maximum error in the prediction of the heating load, using the proposed method, is 
expected to be confined within 10%. This is compatible with the value of the safety factor 
usually used in such designs. 
 
 
2. ARTIFICIAL NEURAL NETWORKS  
 
Artificial neural networks (ANN) mimic somewhat the learning process of a human brain. 
Instead of complex rules and mathematical routines, ANN’s are able to learn the key 
information patterns within a multidimensional information domain. In addition, the 
inherently noisy data does not seem to present a problem, since they are neglected. 
 
ANN models represent a new method in system prediction. ANNs operate like a “black 
box” model, requiring no detailed information about the system. Instead, they learn the 
relationship between the input parameters and the controlled and uncontrolled variables by 
studying previously recorded data, similar to the way a non-linear regression might 
perform. Another advantage of using ANNs is their ability to handle large and complex 
systems with many interrelated parameters. They seem to simply ignore excess data that 
are of minimal significance and concentrate instead on the more important inputs.  
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A schematic diagram of a typical multilayer feedforward neural network architecture is 
shown in Fig. 1. The network usually consists of an input layer, some hidden layers and an 
output layer. In its simple form, each single neuron is connected to other neurons of a 
previous layer through adaptable synaptic weights. Knowledge is usually stored as a set of 
connection weights (presumably corresponding to synapses in biological neural systems). 
Training is the process of modifying the connection weights in some orderly fashion using 
a learning method. The network uses a learning mode, in which an input is presented to the 
network along with the desired output and the weights are adjusted so that the network 
attempts to produce the desired output. The weights after training, contain meaningful 
information whereas before training the random weights have no meaning. 
 
The most popular learning algorithms are the backpropagation and its variants (Werbos, 
1974; Rumelhart et al., 1986). A training set is a group of matched input and output 
patterns used for training the network, usually by suitable adaptation of the synaptic 
weights. The outputs are the dependent variables that the network produces for the 
corresponding input. It is important that all the information the network needs to learn, is 
supplied to the network as a data set. When each pattern is read, the network uses the input 
data to produce an output which is then compared to the training pattern, i.e., the correct or 
desired output. If there is a difference the connection weights (usually but not always) are 
altered in such a direction so that the error is decreased. After the network has run through 
all the input patterns, if the error is still greater than the maximum desired tolerance, the 
ANN runs again through all the input patterns repeatedly until all the errors are within the 
required tolerance. When the training reaches a satisfactory level, the network holds the 
weights constant and uses the trained network to make decisions, identify patterns, or 
define associations in new input data sets not used to train it. 
 
 

  

Hidden layers 

Output layer 

 
…
 
 
…
 
 
…

Input layer 

 
Fig. 1. Schematic diagram of a multilayer feed forward neural network. 

 
 
3. HEATING LOAD ESTIMATION USING ARTIFICIAL NEURAL NETWORKS 
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For the training of an artificial neural network, data from 250 known cases were used. 
These were selected from successful past designs for which the owners expressed their 
satisfaction. The data varied from small rooms 1-2 mP

2
P in area to large spaces of 100 mP

2
P 

floor area. The type of rooms used ranged from small toilets to large classroom halls while 
the room design temperature varied from 18P

o
PC to 23P

o
PC. In addition, these rooms exhibited 

a large variety of structural characteristics e.g. rooms with and without windows, with and 
without external walls, of diverse types of construction, etc. This variety in data was 
thought necessary for enabling the ANN to learn a large spectrum of cases. On a test run, 
the applicability of the ANN’s for such predictions was investigated using the whole range 
of possible data for training the network. This training gave excellent results with an RP

2
P-

value equal to 0.9990. This accuracy confirmed the potential of ANNs for such 
predictions. 
 
In order to facilitate the work of designers it is desirable to reduce the number of data 
required for calculations. The data used for the training of the network, are those that 
mostly affect the heating load and are easily obtainable. These are shown in Table 1. It 
may be observed that the infiltration losses have not been explicitly taken into account. 
This is so because these depend on the window area, and hence are indirectly taken into 
account by the  network.  
 
Some parameters which are important to the estimation of the heating load, such as the 
type of wall and glazing have also been incorporated. In these cases no exact U-values 
were used but instead class numbers such as 0, 1, 2 etc. corresponding to each type of 
construction have been assigned. 
 

 
 

Table 1. Input data used for the training of the network. 
 

 

Window area (mP

2
P) 

External wall area (mP

2
P) 

Partition area (mP

2
P) 

Floor area (mP

2
P) 

Roof / Ceiling code (1 = ceiling, 2 = roof)

Window type code (see Table 2) 

Wall type code (see Table 3) 

Design room temperature (P

o
PC) 

 
 
Tables 2 and 3 list the various classes of windows and walls used in this study as well as 
their corresponding U-values. These are referring to the most usual types of wall 
constructions and glazings found in Cyprus. It is pointed out that for this study no details 
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on the various types of roofs, ceilings and partitions have been used. This has been done 
because in Cyprus there is not much variation in the above constructions and also because 
at this stage the study aims at establishing the suitability of artificial neural networks for 
heating load calculations and not to produce an all encompassing engineering tool. Such a 
tool should be enriched with a greater variety of structural construction types and trained 
also for different ambient conditions.  

 
Table 2. Window types used for network training. 

 

Class value Description U-value (W/mP

2
PK) 

0 

1 

2 

No window 

Single glazing 

Double glazing 

- 

6.4 

3.2 

 
 

Table 3. Wall types used for network training. 
 

Class value Description U-value (W/mP

2
PK) 

0 

1 

2 

3 

4 

No wall 

Single wall 

Double wall without insulation 

Double wall with 25mm polystyrene  

Double wall with 25mm polyurethane  

- 

2.0 

1.5 

1.2 

1.0 

 
 
Various network architectures have been investigated aiming at finding the one that could 
result in the best overall performance. The architecture, from those tested, that gave the 
best results and finally adopted is shown in Fig. 2. This architecture has three hidden slabs 
of different activation functions. The input slab activation function was linear, while the 
activations used in the other slabs are indicated in Fig. 2 (Gaussian for slab 2, Tanh for 
slab 3, Gaussian complement for slab 4). The network consists of ten neurons in each 
hidden slab. Eight input neurons have been used, corresponding to the values shown in 
Table 1 for an eight-element input vector of the training data set. The output is a single unit 
corresponding to the value of the actual heating load in kcal/hr for each room. The 
backpropagation learning algorithm has been used. The network gain was set to 0.1 and the 
momentum factor to 0.5. The training data set was composed of 225 patterns while the test 
data set used for network verification had 25 patterns. 
 
 
 
 

SLAB 2 
(hidden)

 
(10 neurons)

 
Gaussian 

 

5 



 

SLAB 3 
(hidden)

 
(10 neurons)

 
tanh 

  
 
 SLAB 1   
(input) 

 
(8 neurons) 

 
Linear 

SLAB 4 
(hidden)

  
(10 neurons)

 
Gaussian 

Complement

  
 

SLAB 5 
(output) 

 
(1 neuron) 

 
Logistic 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Neural network architecture employed. 
 
 
The training data were learned with an RP

2
P-value of 0.9985. In the early stages of the work, 

the network did not produce results of adequate accuracy. The maximum difference 
between predicted and actual heating load was 15.2%. This error is quite high and it was 
decided to split the training data in two groups; one for small rooms of floor area up to 
7mP

2
P and another for rooms of floor area varying between 7 and 100mP

2
P. For each group a 

different network of architecture similar to the one shown in Fig. 2 was trained. The first 
group (small room area data file) comprised of 80 cases and the second group (large room 
area data file) comprised of 170  cases. The RP

2
P-values obtained for these networks were 

0.9990 and 0.9996 respectively, while the maximum difference between predicted and 
actual heating load was confined to 9%.  
 
 
4. RESULTS / VALIDATION 
 
Once a satisfactory degree of input - output mapping has been reached, the network 
training is freezed and the set of completely unknown test data is applied for verification. 
In more than 90% of  the cases tested, the difference between predicted and actual heating 
load, for the testing set, was confined to less than 5%. The remaining 10% of the cases had 
a difference between 5% and maximum of 10%. Typical test results for some rooms of the 
“small spaces network” are shown in Table 4 and for the “large spaces network” in Table 
5.  

 
Table 4. Test results for the “small spaces network”. 
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Room # Actual load  

(kcal/hr) 

ANN predicted load 

(kcal/hr) 

% difference 

1 

2 

3 

470 

454 

917 

418 

447 

964 

-10 

-1.3 

+5 

 

 

Table 5. Test results for the “large spaces network”. 

 

Room # Actual load  

(kcal/hr) 

ANN predicted load 

(kcal/hr) 

% difference 

1 

2 

3 

4 

3207 

3629 

2701 

2120 

3491 

3724 

2598 

2107 

+9 

+2.6 

-3.8 

-0.6 

 
 
It can be seen from these Tables that the heating load estimation was performed with 
adequate accuracy. The cases shown in Tables 4 and 5 are specifically selected to show the 
range of accuracy obtained and in particular the minimum and maximum deviations. It 
should be noted that although a relatively high percentage difference has been obtained for  
some cases, this does not affect the size of the heating radiators to be selected for each 
room. This is so because the sizes of commercial radiators which are available, vary in 
steps of 0.1m and 0.2m, which correspond to a difference in heating load of about 220 
kcal/hr and 450 kcal/hr respectively. The errors of the test runs presented in Tables 4 and 5 
are well within the above values. 
 
5. CONCLUSIONS 
 
Once trained, the network estimates the heating load very fast. The accuracy of the present 
method is better than 90% which is well within the acceptable level used by design 
engineers.  At this stage the work was confined at primarily investigating the suitability of 
artificial neural networks for heating load estimation. In order for the network to be of 
significant use to Building Services Engineers it needs to be enriched with more training 
cases and more diverse constructional and environmental parameters. Furthermore it is 
estimated that its performance will improve with use, since the network has the capability 
of learning from examples. As these become available, they may be used to retrain the 
network and hence to improve its accuracy. This method may also be applied for the 
cooling load estimation, a job which is much harder. We are currently working in this 
direction and we will report the results as soon as they are available. 
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