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ABSTRACT 

CCAnalytically modeling the complex fluid flow phenomena that occurs during natural 
convective heat transfer in fenestration system cavities (windows, doors, skylights, curtain-walls, 
etc.) is a complex task. Laminar flow of a fluid in a tall vertical glazing cavity can occur in the 
form of single cell or as a stable multicellular flow. Until the early 1980’s, experimental results 
were mostly available, along with limited analytical studies based on theoretical considerations.   
Empirical heat transfer correlations, based on experimental results for tall cavities, are still 
widely used to determine the heat transfer through the fenestration glazing cavities. The 
correlations currently in use are primarily functions of the Rayleigh number, RaBLB, and sometimes 
the aspect ratio, A (ratio of cavity height to  width).  However, the dependence of heat transfer 
coefficients on the aspect ratio A has not been completely resolved. 

In this work, based on the numerical results obtained using  finite element calculation 
methods, a new set of analytical correlations are developed as functions of both RaBLB and A.  The 
numerical analysis was performed over a range of aspect ratios from A=5 to 80 with Rayleigh 
numbers within the laminar flow regime, which covers a range of conditions typical of 
fenestration systems and solar energy collectors.  The standard deviation between the numerical 
results and the analytical correlations developed from them is less 2 than percent.  The new 
correlations are also in good agreement with available experimental data and other numerical 
calculations as shown in the results and discussion section.  The new correlation is formulated as 
two equations applicable for two ranges of Rayleigh numbers, making them easy to use in 
engineering practice.  

 

INTRODUCTION 

 Convective heat transfer in insulated glazing unit (IGU) cavities is a major component of 
the overall heat transfer in fenestration systems.  The present understanding of the thermal and 
hydrodynamic behavior of natural convection heat transfer in enclosures is based on the 
experimental studies of Eckert and Carlson (1961) and Elder (1965).  These two studies provided 
detailed measurements of the velocity and temperature distributions in cavities, making the 
thermal and hydrodynamic behavior better understood.  They  also confirmed the existence of 
the flow regimes described in an  earlier analytical investigation of Batchelor (1954), who had 
concluded that the two regimes that exist in the flow field were: (1) at low RaBLB, heat is 
transferred across the cavity primarily by conduction, and (2) at high RaBLB, the flow is confined to 
boundary layers at the side walls for which the dominant mode of heat transfer is convection.  
These two flow situations are called the conduction regime and the boundary layer regime.  
Contrary to the Batchelor’s uniform temperature core suggestion (1954) for the boundary layer 
regime, Eckert and Carlson (1961) and Elder (1965) observed a presence of a vertical 
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temperature gradient in the core region for flow  beyond the conduction regime.  As an 
enhancement of the two regimes defined by Batchelor (1954), three heat transfer regimes were 
qualitatively defined by Eckert and Carlson (1961).  They were the conduction regime, transition 
regime (between the conduction and boundary layer regimes) and boundary layer regime as 
shown by a regime definition figure in their paper.  In addition, they proposed two correlations to 
evaluate the heat transfer in the conduction and boundary layer regimes: 

Conduction regime correlation:  

                                Nu Gr
L
HL = + × ×1 0 00166 0 9. ( ) .

L                                                  (1) 

Boundary layer regime correlation:  

                                Nu Gr
L
HL L= × ×0119 0 3 0 1. ( ) ( ). .                                                      (2) 

Since the number of experiments conducted by Eckert and Carlson was not sufficient to 
quantitatively establish the exact limits between the various heat transfer regimes as well as to 
quantify the heat transfer performance in the transition regime, the above two correlation 
equations are restricted to the conduction regime and boundary layer regime, whose limits are 
shown in a flow regime definition figure given in Eckert and Carlson (1961). 

Since these early pioneer studies, a number of numerical and experimental studies have 
been conducted for natural convection in air filled rectangular vertical cavities and slots.  Jakob 
(1967) developed a correlation based on early experimental studies of natural convection in 
rectangular cavities for the aspect ratios between 3.12 and 42.2.  Newell and Schmidt (1970) 
solved the time dependent governing differential equations (mass, momentum and energy) by 
using Crank and Nicholson finite difference method.  Yin, et al (1978) experimentally 
investigated natural convection for various cavity aspect ratios ranging from 4.9 to 78.7.  All of 
the correlations that were developed to evaluate the heat transfer across vertical cavities had the 
same form as shown below:  

                                Nu C Gr
H
LL L

a= × ×( ) ( )b                                                              (3) 

The numerical values for constants C, a and b are given in Table 1 which also includes the 
boundary layer regime’s correlation of Eckert and Carlson (1961).  It should be noted that the 
correlations given in Table 1 were developed with zero heat flux (ZHF) boundary conditions at 
top and bottom cavity surfaces, and are for air, with a Prandtl Number, Pr, of approximately 0.7. 

Table 1   Empirical constants and range of A and GrBL B for Equation 3 

Investigator C a b Range of A Range of GrBLB 

Jakob 0.180 0.250 -0.111 3.12 to 42.2 2.0×10P

4
P to 2.0×10P

5
P 

Eckert and Carlson 0.119 0.300 -0.100 2.5 to 46.7 Defined in their figure 
Newell and 0.155 0.315 -0.265 2.5 to 20.0 4.0×10P

3
P to 1.4×10P

5
P 

Yin et al. 0.210 0.269 -0.131 4.9 to 78.7 1.5×10P

3
P to 7.0×10P

6
P 
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To be more general for different fluids, the product of Grashof number and the Prandtl 
number, the Rayleigh number, RaBLB, should be used.  Raithby, et al (1977) presented an analysis 
for the heat transfer across near vertical fluid cavities with the ZHF boundary conditions at the 
top and bottom cavity surfaces based on the previous analytical work of Raithby and Hollands 
(1975).  There, a generalized correlation equation set to evaluate the integrated Nusselt number 
was proposed for fluid layers tilting in the range of -20P

°
P to 20P

°
P from the vertical and Prandtl 

numbers varying from 0.02 to ∞.  In addition, their correlation covers both the laminar and 
turbulent flow regimes.  For air filled vertical cavities, their correlation consists of three 
equations where the maximum value of the Nusselt number from the three equations shown 
below is used.  The value of one is the lower limit for conduction only. 
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The above equation set is valid for aspect ratios greater than 5 and Rayleigh numbers 
varying from 10P

3
P to approximately 7×10P

6
P (this range of Rayleigh numbers was obtained from 

their figures (Raithby, et al 1977).  For higher aspect ratios, when compared with the 
experimental data of ElSherbiny, et al (1982), Equation 4 underpredicts the integrated Nusselt 
number from 9% at A=40 to 28% at A=80 for a large range of Rayleigh numbers.   

 All of the correlations reviewed so far are simple power law type of equations, which are 
unable to account for the complex interaction of aspect ratios and Rayleigh numbers on 
integrated Nusselt numbers.  As a result, discrepancies exist between different correlations, and 
also between correlations and experimental data.  To overcome this problem, more 
comprehensive forms of the correlation equations have been used since early 1980’s.  Raithby 
and Wong (1981) developed a correlation based on their numerical results, using the finite 
difference method, for vertically oriented air filled cavities.  Their correlation, as given below, is 
valid for aspect ratios from 2 to 80 and Rayleigh numbers from 10P

3
P to 10P

5
P: 
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Where RaP

*
P for cavities with perfectly conducting boundary conditions at the cavity top and 

bottom boundaries, called the linear temperature profile (LTP) boundary condition, is given by: 

                                Ra
A

Ra
A

L*
.(

.
)= −1

102
0 44                                                                             (6a) 

For cavities with zero heat flux boundary conditions at the cavity top and bottom boundaries, 
called the zero heat flux (ZHF) boundary condition, RaP

*
P  is given by: 

 3



                                Ra
A

Ra
A

L* ( .
.
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0 73

                                                                        (6b) 

ElSherbiny, et al (1982) performed experimental studies for cavities with perfectly 
conducting top and bottom cavity boundaries (LTP conditions), which resulted in six 
correlations, one for each aspect ratio (A=5, 10, 20, 40, 80, 110).  Except for the correlation at 
A=20, the other five equations are considered the most accurate presented to date, but are 
restricted to the corresponding aspect ratios only.  To overcome this shortcoming, ElSherbiny, et 
al (1982) also provided a correlation applicable over the range of  aspect ratios and Rayleigh 
numbers for their measurements.  This correlation, because it is much simpler then the six 
equations for the specific aspect ratios, compromises some accuracy due to the large range of 
aspect ratios and Rayleigh numbers it covers.  Their correlation has the following form : 
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Where again, the maximum value of the Nusselt number from the three equations is used.  It can 
be observed that only the third equation in this set of equation is a function of the aspect ratio 
and it only affects the NuBLB if A is less than 20.  

More recently, Wright (1996) developed a new correlation from the experimental data of 
ElSherbiny, et al (1982) and Shewen (1986), both of which has the LTP boundary conditions at 
the top and bottom cavity surfaces.  Wright’s correlation has the form: 
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This correlation is similar to that of ElSherbiny, et al (1982). It includes the correlation NuBL1B, 
which was developed from the experiment data of both ElSherbiny, et al (1982) and Shewen 
(1986) and the third equation of ElSherbiny’s correlation (Equation 7) which is designated as 
NuBL2B.  In Equations 8, again the only place where the aspect ratio is included is the last equation. 
However, the applicable aspect ratio range was improved from A < 20 in Equation 7 to A < 25 in 
Equation 8.  Hence, for aspect ratios which are greater than 25 and less than 110, the NuBLB is 
assumed to be independent of the aspect ratio.  This is not true for moderately high aspect ratios 
between 25 and 40, as pointed out by Korpela, et al (1982), who showed that the aspect ratio has 
fairly significant effect on the integrated Nusselt number.  It also appears that for higher aspect 
ratios in the range of 40 < A < 80, and for Rayleigh numbers greater than 5950 when 
multicellular flow patterns exist, the resulting Nusselt number will be dependent on the aspect 
ratio.  The reason is that at higher aspect ratios, more cells will exist in the cavity (Korpela, et al 
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1982, Lee and Korpela 1983, Quéré 1990, Zhao, et al 1997), therefore increasing the integrated 
Nusselt number. In addition, based on the limit of transition from the laminar regime to the 
turbulent regime defined by either Batchelor (1954) or Yin, et al (1978), the higher the aspect 
ratio, the earlier the flow becomes turbulent. Therefore, it is expected that the values of NuBLB  will 
be different for different aspect ratios at the same Rayleigh number.  Actually, it can be shown 
by using the more accurate set of correlations from ElSherbiny, et al (1982) that the difference in 
Nusselt numbers between different aspect ratios (A ≥ 40) could be up to 8 percent at high 
Rayleigh numbers. 

  Therefore, in this work, the objective was to develop a set of correlations that are able to 
more accurately predict natural convection heat transfer in vertical cavities as a function of both 
aspect ratio and Rayleigh number.  To accomplish this, laminar natural convection in insulated 
glazing unit (IGU) cavities with constant temperature boundary conditions along the vertical 
surfaces and zero heat flux (ZHF) boundary conditions at the horizontal surfaces was 
investigated.  Numerical calculations were performed for twelve aspect ratios from 5 to 80 and a 
range of Rayleigh numbers within the laminar flow regime (see hatched area in Figure 1).  The 
numerical calculations were performed by using a general-purpose fluid flow and heat transfer 
finite-element analysis software package FIDAP (FDI 1996).   

 In addition to the present range of investigation, the limits of transition from laminar flow 
to turbulent flow (Yin, et al 1978) and the limit of transition from the conduction regime to 
boundary layer regime (Batchelor 1954) are also included in Figure 1.  It can be observed that 
the current investigation covers a large range of laminar flow regime, which represents many of 
the conditions typical for fenestration systems and solar energy collectors.  For A=80, the limit of 
transition to turbulent flow was attained. 
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Figure 1.   CCRange of aspect ratios and Rayleigh numbers covered in this study 

PROBLEM DESCRIPTION 
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The geometry and boundary conditions for an IGU cavity typical of fenestration systems 
is shown in Figure 2.  To treat the problem as two-dimensional (2-D), it is assumed that the 
cavity is infinitely long in the z-direction which is perpendicular to the plane of the drawing. The 
two vertical walls are held at constant temperatures  and  T  with  > T . The top and bottom 
walls are adiabatic (ZHF conditions).  

T1 0 T1 0

L

T0 T1

u v
T

y
= = =0 0,

∂

∂

u v= = 0

X

Y

H

u v
T

y
= = =0 0,

∂
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Figure 2.   Geometry and boundary conditions for IGU rectangular cavity. 

 

Laminar natural convective heat transfer is governed by the fundamental laws of 
conservation of mass (continuity equation), Newton’s Second law (momentum equation) and the 
conservation of energy (energy equation).  For the two-dimensional problem considered here, 
following the Boussinesq approximation as well as the assumption of an incompressible fluid 
flow with negligible viscous dissipation, the dimensionless form of the governing equations can 
be given as, 

Continuity equation:     
∂
∂

∂
∂

u
x

v
y

+ = 0                                                                                        (9) 

 

 

 

Momentum equations: 
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x direction:                 
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y direction:                 
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Energy equation:       Pr
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The characteristic of velocity, temperature, pressure, length and time used to make the field 
variables dimensionless are: 

                                   U T
U
L

L L U, , , , /∆
µ

                                                                (13) 

where the characteristic velocity is defined as U≡ ( .  The boundary conditions 
imposed in the dimensionless form for this problem are given

) /g TLβ∆ 1 2

 below. 

Temperature boundary conditions on the vertical surfaces: 

                                   Θ( , )x y= =0 0,   Θ( , )x y= =1 1                                            (14) 
No slip velocity boundary conditions on all bounding surfaces: 

                   u x y v x y( , ) ( , )= = = =0 0 0 ,   u x y v x y( , ) ( , )= = = =1 1 0                           (15) 

                   u x y v x y( , ) ( , )= = = =0 0 0 ,                          (16) u x y H v x y H( , ) ( , )= = = = 0

Zero heat flux boundary conditions at the top and bottom surfaces: 

                   ∂
∂
Θ
y

y=

=
0

0 ,   ∂
∂
Θ
y

y H=

= 0                                                                     (17) 

NUMERICAL CALCULATIONS 

 The finite element calculation procedure used in this study is based on the Galerkin 
Weighted Residual Method (WRM) in which penalty function approach is utilized to reduce the 
number of unknowns, by eliminating the pressure from the problem.  A detailed discussion of 
this numerical method for the solution of natural convection heat transfer in fenestration system 
cavities can be found in FDI (1996) and Curcija (1992). 

The computational domain considered here is described by a set of fully coupled 
nonlinear governing equations. Therefore, to assure the convergence of the solution method, an 
incremental loading technique was applied.  This technique consists of initially assuming a Rayleigh 
number much lower than required so as to obtain a converged solution, and then using this solution 
as the initial condition (or guess) for the next calculation made at a higher Rayleigh number.  The 
technique is repeated until a converged solution is obtained for the desired Rayleigh number.  The 
purpose of this technique is to bring the initial guess for each load step within the radius of 
convergence of the numerical iteration method used.  In addition, at higher Rayleigh numbers, the 
flow becomes unsteady and as a result the steady state time independent solutions become 
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divergent.  Therefore, in this study the non-steady (time dependent) forms of the governing 
equations were solved for higher Rayleigh numbers to insure more appropriate converged 
solutions. 

A numerical finite element grid study, based on methods presented in Burnett (1984), 
was performed for low (5), middle (20) and high (80) aspect ratios. The type of element selected 
throughout this study is a 9-node quadrilateral element.  Table 2 gives the result of the grid study 
for three selected aspect ratios. 

Table 2.   Examples of the grid study results 

Finite element numerical results for A=80, RaBLB =5000 

Grid (i×j) NuBLB Grid (i×j) NuBLB Grid (i×j) NuBLB 

4x120 1.048404 4x178 1.048419 4x210 1.048425

8x120 1.046684 8x178 1.046687 8x210 1.046687

12x120 1.046507 12x178 1.046510 12x210 1.046510

16x120 1.046464 16x178 1.046468 16x210 1.046468

20x120 1.046449 20x178 1.046453 20x210 1.046453

Finite element numerical results for A=20, RaBLB =40000 

4x40 2.258403 4x60 2.084631 4x80 2.104691

8x40 2.078770 8x60 2.073099 8x80 2.073637

12x40 2.095914 12x60 2.066097 12x80 2.067072

16x40 2.094041 16x60 2.064561 16x80 2.065436

Finite element numerical results for A=5, RaBLB =100000 

4x30 4.112123 4x44 4.114562 4x60 4.115644

8x30 3.782898 8x44 3.783152 8x60 3.783269

12x30 3.741630 12x44 3.741682 12x60 3.741708

16x30 3.730722 16x44 3.730753 16x60 3.730760

20x30 3.726700 20x44 3.726730 20x60 3.726739

 
In Table 2, i×j denotes the number of elements in the x-direction by the number of 

elements in the y-direction (see Figure 2 for the definition of the x and y directions).  It should be 
noted that the elements are not evenly spaced in the problem domain.   Gradual meshing was 
employed with thinner elements used close to the walls.  As it can be seen, increasing the already 
large number of elements in the y direction has very small effect on NuBLB.  On the other hand, 
increasing the smaller number of elements in x direction has a significant effect for all aspect 
ratios.  Based on the discussions of Gill (1966) and Curcija (1994) for numerical calculations for 
this type of problem, to obtain accurate results the thickness of the first layer of elements closest 
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to the vertical wall must be checked with the formula δ = L×(RaBLB×L/H)P

-0.25
P for estimating a 

boundary layer thickness.  The mesh refinement should be undertaken whenever the thickness of 
the first layer of elements is larger than that of δ.  The thickness requirement of the first layer of 
the elements does not apply to flow in the conduction regime as is the case for A=80 and RaBLB 
=5000, where mesh density variations in the x direction produce very little change in the 
calculated Nusselt numbers.  It should be noted that at certain aspect ratios and values of RaBLB, 
multicellular flow occurred, resulting in increased heat transfer rates.  The limits of this flow are 
discussed in Zhao, et al (1997).  It was found that for the three examples shown in Table 2, 
16x178, 12x80 and 12x44 grids are sufficient for performing the numerical calculations for 
aspect ratios of 80, 20 and 5 respectively.  In this study, the appropriate mesh density for those 
aspect ratios where the grid study was not performed was constructed using the guidance of the 
known mesh densities at aspect ratios where the grid study was carried out. Examples of finite 
element meshes for several different aspect ratios are shown in Figure 3. 
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Figure 3.  Examples of finite element meshs used. C 
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RESULTS AND DISSCUSSION  
 

The results obtained from the numerical solution for the IGU cavities have been plotted 
in Figure 4.  For IGU cavities, the range of RaBLB typical for the majority of fenestration products 
is between 6000 and 10000 (Wright 1995), with some products having RaBLB up to 20000.  
Therefore, to more accurately predict the heat transfer across the IGU cavities, more data points 
are needed in that range, as indicated in Figure 4b.  
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Figure 4 a.   Results for IGU cavities over complete RaBLB range 
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Figure 4b.   Results for IGU cavities for 0 < RaBLB < 20000 

 
As mentioned earlier, the current study is restricted to the laminar flow regime. Therefore, as the 
aspect ratio increases, the range of data points that can be obtained becomes narrower as shown 
in Figure 4b.  The results in Figure 4a were correlated by using the nonlinear fit algorithm given 
in Wolfram (1992) which resulted in the following two equations for A=5 to 80 and ZHF 
boundary conditions: 

Nu
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L L
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− × + × <
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. ( . ) ,
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0 0999542 1 0 997983 10

1 08597 0 279072 4

0 0997981 0 274216 4 Raul

     (18) 

Where RaBulB is the upper limit of RaBLB for different aspect ratios as given in Figure 1.  The 
correlation equations given in Equation 18 agree with the individual calculated results to within 
6% (maximum deviation) and has a standard deviation was 2%.  Equation 18 is not valid beyond 
the range of this numerical investigation (see Figure 1).  This new correlation was then compared 
with existing correlations derived either from experimental data or from numerical data.  These 
comparisons are shown in Figures 5 to 9 for aspect ratios from 5 to 80CC.  Figures 5b, 6b and 7b 
show more detail in the typical fenestration Rayleigh number range. 
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Figure 5a.   Comparison of average NuBLB for aspect ratio = 5 
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Figure 5b.   Comparison of average NuBLB in the typical fenestration RaBLB range for A=5 
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Figure 6a.   Comparison of average NuBLB for aspect ratio = 10 
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Figure 6b.   Comparison of average NuBLB in the typical fenestration RaBLB range for A= 10 
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Figure 7a.   Comparison of average NuBLB for aspect ratio = 20 
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Figure 7b.   Comparison of average NuBLB in the typical fenestration RaBLB range for A = 20 
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Figure 8.   Comparison of average NuBLB for aspect ratio = 40 
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Figure9.   Comparison of average NuBLB for aspect ratio = 80C 

 

Note that the symbols used represent the data points where the corresponding correlation 
was evaluated.  All of the comparisons are made at the aspect ratio where the correlations of 
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 The new analytical correlation developed in this study resolves the dependence of NuBLB on 
both Rayleigh number and aspect ratio.  From a large number of numerical calculations covering 

iny’s “fine-grain structure” are available, since some or all of those five aspect ratios 
were also widely used  in other numerical studies such as A=5, 10 and 20 in Newell and 
Schmidt’s (1970) work and all of them by Raithby and Wong’s (1981) study. In addition, it is
also important to address the effect of the different thermal conditions applied on the top 
bottom surfaces, which appears to be the reason for some of the disagreement between differen
researchers.  Before doing this, it should be noted that the linear temperature profile (LTP) 
boundary condition  more closely approximate the situation in a fenestration cavity with an 
aluminum spacer.  The zero heat flux (ZHF) boundary condition is more representative of lo
thermal conductivity spacer materials and geometries now being introduced by window 
manufacturers. 

 While this study and Newell and Schmidt (1970) and the ZHF correlation in Rait
Wong (1981) us

 Wright (1996) and the other set of correlations in Raithby and Wong (1981)  are for the 
LTP boundary conditions on the top and bottom surfaces.  Raithby and Wong (1981) showed 
that the trends to predict the heat transfer rate are similar for the ZHF and LTP conditions, but 
the value of the heat transfer is significantly lower for the LTP than the ZHF case for lower 
aspect ratios (A ≤ 40), and the difference decreases as the aspect ratio increases.  Wright (1990)
also showed the existence of such a trend.  By examining the ZHF results of current study w
the LTP results of ElSherbiny, et al (1982) in Figures 5 to 9, except for A=20, this trend can also
be observed.  In the case of A=20, ElSherbiny’s LTP correlation is consistently higher (up to 10 
percent at RaBLB=99400) than Equation 18, a similar observation also applies to the correlation of 
Wright (1996), who developed a correlation based on measurements of both ElSherbiny, et al 
(1982) and Shewen (1986).  Therefore, the influence of LTP and ZHF boundary conditions on 
the average NuBLB as shown in Figures 5 to Figure 9, in comparison with the other results, 
indicates that ElSherbiny’s (1982) correlation overpredicts the actual NuBLB value at an aspect rat
A=20CC.  At aspect ratio equal to 40 and 80 where it is believed that the influence of LTP a
boundary conditions on NuBLB is small (Wright 1990), ElSherbiny’s correlation agrees well with 
the current correlation as shown in Figure 8 and 9, having a maximum difference of 4 percent.  

Contrary to ElSherbiny’s LTP correlation developed from measured data, Raithby and 
Wong’s numerical LTP correlation consistently predicts lower NuL than that of the current studyB B

of the aspect ratios under examination, with the deviations from 12% at A=5 to 1.6% at 
A=80 (see Figures 5 to 9).  The ZHF correlation of Raithby and Wong, except for RaBLB≥10000 at 
A=40, is in general agreement with the correlation of current study with maximum difference o
2.4% occurring at A=20 and RaBLB=6000.  For A=40 and RaBLB≥10000, Raithby and Wong’s (1981) 
results produce differences in NuBLB up to 10 percent lower than Equation 18.  The correlation 
equation of Newell and Schmidt (1970) agrees over their stated valid range to within 12% with 
Equation 18 (see Figures 5 to 7), with the largest deviations occurring at higher RaBLB.  This is 
probably due to the form of their equation being simple power law equations which generally 
can not account for the complex interaction of A and RaBLB on NuBLB (see Figure 4). 

CONCLUSIONS AND RECOMMENDATIONS 
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a large range of aspect ratios and Rayleigh numbers, the calculated results provide enough 
information for developing a new correlation which is able to more accurately predict the heat 

small, 

nd 

 
0 

e of both A and RaBLB needs to be extended to include flows in the turbulent 

ergy, Office of Buildings and Community Systems, Building Systems Division of 
the U.S. Department of Energy and the University of Massachusetts under Cooperative 

4SF1812. Computations for large aspect ratios are carried out on 
ce 

L  = thickness of air layer (m)                           
 average) Nusselt number based on cavity thickness, hL/k 

 0.71,

transfer through the IGU cavities of fenestration products.  The correlation compares favorably 
with the experiments results of ElSherbiny for A≥40, which are the typical of those found in 
fenestration products, where the influence of LTP and ZHF boundary conditions on NuBLB is 
and also with the numerical results of Raithby and Wong.  The discrepancy existing between 
Equation 18 and the correlation of ElSherbiny, et al (1982) for lower aspect ratios (5,10) is due 
to the effect of the different thermal boundary conditions (LTP vs ZHF) imposed on the top a
bottom surfaces.   

 Future work needs to include the linear temperature profile (LTP) boundary conditions
for the same range of RaBLB and A, and to do additional numerical calculations in the range of 800
to 10000 to obtain smoother transition between the two equations in the correlation (Equation 
18).  Also, the rang
flow regimeCC. 
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NOMENCLATURE 

A  = aspect ratio, H/L 
H  = height of air layer (m)      

NuBLB = Integrated (or
Pr  = Prandtl number =  ν α/  

RaB   = Rayleigh number bL ased on cavity thickness, g TLβ
να
∆ 3

 B

GrBLB  = Grashof number d base  on cavity thickness, 
g TLβ
ν
∆ 3

 2

 temp
B1  B  temp

perature of cavity cold wall (K)          
 temp

   

 
g

N/mP P] 

T  = erature (K)                                        
T = erature of cavity hot wall (K)  
TB0  B= tem
∆T  = erature difference between cavity hot and cold wall (K) 
u  = x component of velocity (m/s)                  
v  = y component of velocity (m/s)  
cBpB = Specific heat at constant pressure [J/kg⋅K]
 = Gravitational acceleration [m/sP

2
P] 

k = Thermal conductivity [W/m⋅K] 
2p = Total thermodynamic pressure [

 18

Dragan Curcija
�



α = Coefficient of thermal diffusion [mP

2
P/s] 

β = Coefficient of thermal expansion [1/K] 
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