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Defrosting in supermarket refrigeration systems is normally controlled by a preset time cycle 
with most display cabinets timed to defrost every 6 hours.  It is widely acknowledged that 
timed defrost may cause a number of unnecessary defrost cycles and this reduces the energy 
efficiency of refrigeration systems as well as the accuracy of temperature control of the 
cases. This paper investigates the possibility of modelling the amount of frost on the coil by 
using neural networks and proposes a demand defrost method based on it which should 
overcome the disadvantages of other demand defrost approaches. 
 
 
INTRODUCTION
 
Frost forms on evaporator coils by the water vapour in the air condensing and freezing 
when the surface temperature of the coil falls below 0°C.  A small amount of frost may 
improve the heat transfer performance of the coil by increasing the surface area and  
surface roughness which induces increased turbulence (1).  However, significant frost 
accumulation deteriorates the coil performance  by reducing the air flow and thereby the 
refrigerating capacity of the evaporator.  Maintaining the store humidity at low levels, 
and using air curtains to prevent penetration of humid store air into the display cases, 
reduces the rate of frost formation on display case evaporators to some extent, but does 
not eliminate it completely due to the disturbance of the air curtain by shoppers and staff 
loading up the display case.  Consequently, frosting is a major problem in retail 
refrigeration systems and evaporators need to be actively defrosted periodically to 
maintain system performance and temperature control in the display cases. 
 
The most commonly used defrost methods in display cases are hot or cool gas defrost 
and electric defrost.  In electric defrost, the thermal energy to melt the ice is provided by 
an electric strip heater which is situated across the face of the coil.  During defrost the 
refrigerant supply to the display case is switched off, the electric heater is switched on, 
and the evaporator fans blow air which is heated by the strip heater through the coil, 
melting the ice from the coil surface.  This method of defrost can be implemented on 
both conventional, single compressor refrigeration systems, and multiplex refrigeration 
systems which are now widely used in large retail stores. These consist of three or four 
compressors connected in parallel,  providing flexibility in system capacity control and 
maintenance. 
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Another advantage of multiplex refrigeration systems over conventional systems is that 
they allow both hot and cool gas defrost techniques to be implemented.  The former 
involves the circulation of hot gas from the compressor discharge manifold directly to the 
display cases whereas the latter utilises cooler gas from the liquid receiver.  The cool or 
hot gas condenses in the evaporator, releasing heat which melts the ice from the coil.  
During this process the evaporator fans are switched off to prevent water carry-over from 
the coil.  The liquid refrigerant produced in the display cases during defrost is piped back 
to the liquid manifold of the compressor pack for distribution to the other display case 
circuits.  Multiplex refrigeration systems supply refrigerant liquid to a number of display 
cases which are piped in parallel.  For this reason, the number of display cases which can 
be defrosted simultaneously is limited to avoid starvation of the compressors and system 
shut-down due to low suction pressure.  
    
The refrigeration systems in most large stores are monitored and controlled by a central 
network supervisor.  The supervisor controls all the individual case and cold room 
controllers, compressor pack controllers, condenser controllers and monitors pressure 
and temperature at various points in the system.  Defrost can be initiated by the 
supervisor or individual case controllers. In most cases, for simplicity of operation and 
maintenance, defrost is initiated at fixed time intervals.  Defrost scheduling of the display 
cases and the number of defrost cycles per day are set during  store commissioning.  
Defrost, whether gas or electric, is normally terminated when a fixed defrost time elapses 
or when the case evaporator air-off temperature reaches a set value, whichever is sooner. 
    
Defrosting involves the application of heat to the coil in order to melt the frost and this 
penalises refrigeration system  performance due to the fact that during the defrosting 
process  energy is used while producing no useful cooling. Furthermore, during the 
defrost cycle the case and thus the product temperature rises above the set limits for 
normal operation. A demand defrost control system which defrosts the evaporator coils 
when sufficient frost has formed to adversely affect their performance would lead to both 
better temperature control and considerable energy savings. 
 
ENERGY UTILISATION DURING DEFROST
    
Accurate determination of the energy consumption during the defrost cycle would 
require comprehensive instrumentation to measure the power consumption of the 
refrigeration packs during defrost.  Although it will be useful to carry out such an 
exercise, this is beyond the scope of the present paper.  It is interesting, however, to 
make an estimate of the energy consumed during defrost and this can be based on the 
following assumptions: 
Number of defrost cycles during a 24 hour period: 4 
Energy input during the defrost cycle: 3 kW (based on electric defrost) 
Average defrost time: 10 minutes 
     
Assuming an average price of electricity of £0.04/kWh, for a large chain of retail food 
stores having approximately 30,000 display cases, the total annual costs for defrost will 
be in the region of £500,000.  This analysis does not include the extra energy that will be 
required for the temperature recovery of the case after the defrost cycle.  Higher defrost 
frequency and longer defrost cycle duration will increase further the cost of defrosting.  
     



 3

 A considerable opportunity therefore exists to apply more sophisticated defrost control 
strategies to both save energy and improve temperature control. 
 
DEMAND DEFROST
    
A number of demand defrost techniques have been applied over the years which include: 
air pressure differential sensing across the evaporator; sensing the temperature difference 
between the air and the evaporator surface; fan power sensing; variable time defrost 
based on relative humidity and air differential across the coil (2, 3, 4).  
    
More recent methods include defrost initiation  by measuring the ice thickness through 
monitoring the resonant frequency of an acoustic oscillator installed on the evaporator, 
measuring the thermal conductivity of ice (5), using photo optical systems (6), and fibre 
optic sensors to detect the presence of ice (7).  Cost and simplicity of use is a very 
important factor since the number of display cases in a modern supermarket may range 
from to 40 to 150. 
 
Use of Artificial Neural Networks
    
The authors of this paper are currently carrying out investigations to quantify the energy 
consumption during frosting and defrosting and determining the effects of the various 
operating parameters such as refrigerant temperature, coil design and surface 
temperature, air temperature and humidity, air velocity etc. on the rate of frost formation 
and the amount of frost accumulation on display case evaporator coils. 
         
They have proposed the use Artificial Neural Networks to analyse the monitored data on 
line and predict the performance of the coil. The amount of frost on the coil would be 
determined indirectly as a function of the monitored parameters (8). 
    
Neural networks differ from traditional simulation approaches in that they are trained to 
learn solutions rather than being programmed to model a specific problem. They are used 
to address problems that are intractable or cumbersome to solve with traditional methods.  
A Neural Network consists of a number of processing elements (neurons), each of which 
have many inputs, but only one output.  In a typical network there are three layers of 
neurons i.e. input layer which receives input from the outside world, hidden layer or 
layers which receive inputs from the input layer neurons and output layer which receives 
inputs from hidden layers and passes its output to the outside world and in some cases 
back to preceding layers.  The strength of the network lies in the interconnections 
between the neurons which is modified during training.  The training is done by exposing 
the network to a specified data set of information and applying a training algorithm to 
enable the network to produce the desired output.    
    
Although the amount of frost accumulation could be determined  from empirical 
correlations available in the literature, namely  references (9) and (10), this determination 
is time-consuming and therefore of very little use in real-time operation.  On the other 
hand, the relationship between the amount of frost accumulation and the refrigerant and 
air temperatures and pressures as well as space temperature and relative humidity could 
be learned by a Neural Network.  Once training has been achieved the Network could 
then combine the outputs of the various temperature and pressure sensors to give an on-



 4

line estimate of the amount of frost.  The Neural Network, in this case would be a “soft 
sensor”.  This is similar to “sensor fusion” where a neural network is employed to an 
array of sensors that may exhibit non-linear behaviour, to extract linear measurement of a 
hidden quantity or to produce an estimate of their correlation.  Successful application of 
the `soft sensing' technique has been reported in the biotechnology field where it has been 
used to determine biomass by its effect on temperature, oxygen, water and carbon dioxide 
levels.  Similarly, the rate of frost formation will be determined by its effect on 
temperature and pressure parameters.  
    
It is expected that it will be possible to implement the ANN based system on the existing 
store monitoring and control systems without considerable difficulty. It is envisaged that 
the system will require mainly software modifications with only minimum additional 
instrumentation. 
 
EXPERIMENTAL TEST FACILITY  
 
The experimental results of  this investigation were obtained using two display cabinets 
in the laboratory served by a mini multiplex system compressor pack.  One of the 
cabinets was instrumented with thermocouples and pressure transducers while the second 
cabinet acted as an extra load to facilitate hot or cool gas defrost.   
 
The display cabinet tested was an 8 ft dairy cabinet (Figure 1) with operating temperature 
of  between 0oC - 3°C and cooling capacity of 3.7 kW.  The refrigerant (R22) flow rate 
was measured using a Coriolis mass flow meter.  Temperatures and pressures of the 
refrigerant were measured at five points in the system using thermocouples and pressure 
transducers.  The power consumption of the compressors was recorded using a power 
transducer.  The display cabinet and the coil were fitted with thermocouples on the 
surface.  The operation of the system was controlled by a standard Supermarket 
controller board.  A computer, along with data-acquisition module and software was used 
to record the various parameters at regular intervals.   
 
FIELD TEST DATA 
 
Along with the data collected in the laboratory, a  supermarket was also instrumented to 
record additional parameters, namely the amount of condensate collected after defrost 
along with the space conditions and operating pressures and temperatures. 
 
Timed defrost assumes a worst case scenario, such as in midsummer, when the moisture 
content in the supermarket is high.  This means that during winter, when the moisture 
content of the air is lower, unnecessary defrosts of the cabinets are carried out.  
 
The difference between the summer and winter conditions is illustrated in Table 1. It can 
be seen that in winter the relative humidity in the store is much lower than the average 
relative humidity in the summer, 25% and 40% respectively, whereas the internal 
temperature between the isles is approximately the same, 17.7 oC and 16.7oC 
respectively. The lower internal humidity in winter results in a much lower rate of frost 
formation with each 6 hour defrost cycle giving 2.5 litres of condensate compared to 5.1 
litres of condensate in the summer. This indicates that defrost frequency could be halved 
in winter without significantly affecting the display case performance. 
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Table 1: Defrost data from a supermarket 
 
Parameter August 1996 November 1996 

 
Internal Humidity 40 25 
External Humidity 80 86 
Internal Temperature 16.7 17.7 
External Temperature 14.3 6.7 
Amount of Condensate(lt.) per defrost 5.1 2.5 
 
 
LABORATORY TEST RESULTS AND DISCUSSION 
 
Table 2 shows results obtained from preliminary work carried out in the laboratory. 
Using the space temperature, relative humidity and the number of hours of cooling a 
neural network was trained to learn the relationship between these parameters and the 
amount of condensate obtained after defrost. 
 
Figure 2 shows the amount of condensate collected during  defrost as a function of  space 
temperature and humidity for 6 hours of operation between defrost cycles.  It can be seen 
that frost accumulation is a multivariate non-linear function. In practice of course, the 
rate of frost formation will be a function of a large number of other parameters, including 
the air velocity over the coil, the refrigerant temperature etc. The figure 2 demonstrates 
the principle, however neglects the effects of the other variables and concentrates only on 
store ambient temperature and humidity. 
 
A three layered neural network with three input nodes, seven hidden nodes and one 
output node was used to learn the above function. The architecture  of the network with 
input and output variables is shown in Figure 3.  The predicted output and the training 
targets for the Network are shown  in Figure 4.  The correlation obtained was 0.94 which 
indicates a good prediction of frost formation by the Network. 
 
Figure 5 shows a comparison between actual and predicted results of defrost condensate 
for 8 tests. The results of these tests were not incorporated in the sample used for the 
training of the Network, confirming that a trained network can be a good predictor of the 
quantity of frost on an evaporator coil.  
 
To fit a 3rd order polynomial with three input variables and one output variable to the 
same data at least 27 data points are required in order to ensure that the adaptive 
parameters (the coefficients of the polynomial) are well determined. On the other hand,  a 
Neural Network could be trained with available discrete data.  The importance of neural 
networks lies in the way in which they deal with the problem of scaling with 
dimensionality.  Generally, these models represent non-linear functions of many 
variables in terms of superposition of non-linear functions of a single variable, which 
might be called ‘hidden functions’ (also called hidden units).  The key point is that the 
hidden functions are themselves adapted to the data as part of the training process, and so 
the number of such functions only needs to grow as the complexity of the problem itself 
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grows, and not simply as the dimensionality grows.  The number of free parameters in 
such models for a given number of hidden functions, typically only grows linearly, or 
quadratically, with the dimensionality of the input space, as compared with the dM growth 
for a general Mth-order polynomial, where d is the number of input variable. 
 
 
Table 2: Experimental results obtained in the laboratory 
 
Test No. Hours of 

cooling  
Space 

Temperature °C 
Relative 

Humidity % 
 

Condensate  
collected (lt.) 

1 2 13.8 63.7 2.6 
2 3 13.8 62.8 3.8 
3 3 13.6 64.2 4.5 
4 3 20.2 66.3 6.7 
5 4 13.6 56.3 4.85 
6 5 22.3 34 3.65 
7 5 18.4 37.2 6.5 
8 5 15.1 51.8 6.5 
9 6 19.1 34.7 3.2 
10 6 22.9 38.5 7.5 
11 6 21.9 57.4 9.3 
12 6 20.1 66.3 8.9 
13 6.3 12.9 45.3 4 
14 6.4 14.1 62.1 6.5 
15 7 15 50 7.2 
16 16 14.7 61 10.4 
     

 
 
CONCLUSIONS 
 
Defrost of supermarket refrigeration systems which is performed on a timed basis 
consumes excess electrical energy.  Defrosting of display cases also disturbs the 
temperature control of the case resulting in temperatures which exceed the design 
temperature over a significant time period.  
    
The energy consumption during the defrost process can be reduced using more advanced 
defrost initiation and termination techniques based on demand rather than timed defrost. 
    
Although a number of different demand defrost strategies have been proposed in the past, 
none has found wide acceptance in the food retail refrigeration industry due to poor 
reliability and high capital cost. 
   
This paper proposes a new demand defrost technique based on Artificial Neural 
Networks. ANNs will allow the monitoring of a large number of parameters 
simultaneously and the prediction of the rate of frost formation based on the combination 
of the effects of a number of these parameters. This should eliminate unnecessary 
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defrosts and will allow prioritisation of the display cases in terms of their defrost 
requirements. 
    
Preliminary results show that Neural Networks can be used to estimate the amount of 
frost formation on the coil in terms of the amount of condensate obtained after defrost, 
based on space temperature, relative humidity and hours of cooling.   
 
Further work is being carried out to quantify the effects of frost formation on operating 
parameters such as refrigerant pressures, refrigerant temperatures, air temperatures, air 
velocity and coil surface temperatures in order to determine indirectly from such 
measurements the rate of frost formation on the coil.  
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Figure 1: A typical vertical multideck Display Cabinet. 
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Figure 2: Surface Interpolation for the amount of condensate at varying  
 temperatures and humidities for 6 hrs of cooling. 
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Number of layers = 3 
Input layer nodes = 3 
Hidden layer nodes = 7 
Output layer node = 1 
Transfer function = Sigmoid 
Training Algorithm = Backpropagation 
Correlation = 0.94 
 
Figure 3: Neural Network Architecture used in this application. 
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Figure 4: Result of NN Training. 
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Figure 5: Result of NN Testing. 
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