
International Conference “Passive and Low Energy Cooling 379 
for the Built Environment”, May 2005, Santorini, Greece 
 

Numerical analysis of the microclimate conditions around a new telescope 
in La Palma, Spain  

D. Pérez 
CIMNE, Spain 
 
G. Houzeaux 
Universitat Politécnica de Catalunya and CIMNE, Spain 
 
J. Cipriano 
CIMNE, Spain 
 
 
 
ABSTRACT 
This work aims at applying a numerical analysis 
methodology, based on CFD techniques, to 
evaluate the effect of the wind and the tempera-
ture over the quality vision of a new telescope in 
La Palma (Spain). This island constitutes one of 
the best places in the world to carry out astron-
omy experiments. However, small variations in 
the climate conditions, together with the particle 
dispersion, drastically affect the selection of the 
best place where this building may be installed. 
In this work, the surrounding flow pattern and 
the turbulence distribution of the two possible 
places will be evaluated and analyzed. The nu-
merical simulation will include a discretization 
of La Palma island, statistic analysis of the wind 
variation and a detailed analysis of the wind 
turbulences due to the terrain obstacles and 
other telescope buildings. 

1. INTRODUCTION 
We present in this work a numerical strategy to 
solve external airflows around telescope build-
ings. The computational domain is large enough 
to ensure that its boundaries are placed suffi-
ciently far from the calculation domain (is-
land/building). In this way the calculated flow 
pattern around the computational domain will 
not be affected by the external boundaries of the 
computational domain (Scaperdas and Gilham, 
2004). In addition to the definition of the exter-
nal contours, the definition of the computational 
domain has to include all the relevant details. 
For this type of problems, it will be enough to 

include all the details greater than 0.5 m. The 
terrain details under this value will be consid-
ered part of its own roughness.  

The main objective of this work is to deter-
mine the ideal localization of a new telescope 
for the solar observation in the Roque de los 
Muchachos Observatory (ORM) in the La 
Palma island, Spain. The starting point consists 
in assuming that the quality of the observation 
depends on the characteristics of the airflow 
pattern around the telescope building. Thus, it is 
necessary to know the site where the airflow is 
adequate for optimum observation. The best site 
can be guessed using Computational Fluid Dy-
namics simulations. 

The results presented in this paper are part of 
the work carried out by CIMNE for the Instituto 
de Astrofísica de Canarias (IAC), the Spanish 
public company in charge of the solar telescope 
preliminary studies. 

2. PHYSICAL MODEL 

2.1 Governing equations 
We present in this section the governing equa-
tions considered to model external incompressi-
ble airflows.  

The state of the airflows under consideration 
is generally turbulent, the Reynolds number 
being of the order of 105 up to 107, so that tur-
bulence modeling is necessary. In the perspec-
tive of the solution of large scale problems, en-
semble averaging (also called Reynolds averag-
ing) is performed to filter the Navier-Stokes 
equations, that is, to decompose the flow vari-
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ables into average and fluctuating components. 
This decomposition introduces a new term in 
the momentum equations called the Reynolds 
stress tensor involving the correlations between 
the fluctuating components. The Reynolds stress 
tensor is modeled by the Boussinesq approxima-
tion, introducing at its turn a new unknown, the 
eddy viscosity νt. The resulting system is called 
the RANS (Reynolds Averaged Navier-Stokes) 
equations and reads:  
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where u and p are the unknowns of the prob-
lem, that is the velocity and pressure; ρ  and ν 
are the air density and kinematic viscosity and 

(ε u)  is the velocity strain rate tensor, defined 
as: 
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While the two-equation k-ε turbulence model 
is extensively used in the simulation of external 
flows, a more simple one-equation turbulence 
model, namely the Spalart-Allmaras (SA) model 
(Spalart and Allmaras, 1992), was preferred for 
several reasons: it involves only one additional 
differential equation; it is computationally ro-
bust; in forced convection situations it gives 
similar results to two-equation turbulence mod-
els. The Spalart-Allmaras turbulence model 
consists of a single partial differential transport 
equation that solves for the eddy viscosity such 
that: 
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where cw1, σ, cb1 and cb2 are constants of the 
model, S is the module of the vorticity, d is the 
distance to the wall and fw is a function of the 
vorticity, the distance to the wall, and the eddy 
viscosity itself. The version displayed here 
holds for high-Reynolds number flows. A low-
Reynolds number version, which includes addi-
tional terms, is also available. It is not shown 
here for the sake of clarity. 

2.2 Boundary conditions 
The following boundary conditions are consid-
ered in this work 
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Although the Spalart-Allmaras turbulence 
model takes into account near-wall (viscous) 
effects, the RANS equations are rarely inte-
grated up to the wall, where the exact boundary 
conditions are u=0 and νt=0. In fact, the only 
way to capture the sharp gradients inside the 
boundary layer is to use a very fine mesh, a so-
lution which can be prohibitive for high Rey-
nolds number flows and the large domains in 
play in the present problems. The strategy 
adopted here is based on the law of the wall. By 
assuming that the computational domain is lo-
cated inside the boundary layer at a distance y 
from the real wall, the law of the wall enables 
one to calculate the tangential component of the 
traction ty and the eddy viscosity νty at y. The 
law of the wall first assumes that there exists a 
velocity scale in the boundary layer, called the 
friction velocity U*, which is a function of the 
wall shear stress τw such that: 

* /wU τ ρ=  (4) 

It then states that the flow is parallel to the 
wall with velocity u such that: 

( )u f y+ +=  (5) 

with */u u U+ = , and where * /y yU ν+ =  is 
the dimensionless distance to the wall. Here, 
f(y+) is given by Reichardt’s law, which mimics 
the zero pressure boundary layer flow: 
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Assuming that the shear stress is constant 
across the boundary layer ( | |y wτ=t ), and that it 
is directed to the opposite direction of the flow, 
we have therefore that inside the boundary layer 
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and a fortiori at y  
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Figure 1 illustrates the algorithm. 
For the eddy viscosity, the following law of 

the wall is used (Houzeaux and Codina, 2003): 
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Of course, this procedure is iterative, as the 
velocity u is unknown when updating the tan-
gential traction and the eddy viscosity. The 
global algorithm consists in the following: 
1. Set initial conditions for u and νty. Set y. 
2. Compute U* using Eq. (5) and (6) with u=|u|. 
3. Impose ty using Eq. (7). 
4. Compute νty using Eq. (8). 
5. Solve the RANS (1) and SA (2) equations. 
6. If convergence not achieved, go to 2. 

3. NUMERICAL MODEL 
The set of partial differential equations is solved 
using the finite element method. We will not 
give any detail concerning the precise numerical 
model used in this work but only mention the 
most important points. 

The time integration uses either the backward 
Euler or the Crank-Nicholson schemes. Both are 
unconditionally stable. The former is of first 
order while the latter is of second order.  

Once the variational problems have been es-
tablished, the next step is to undertake the finite 
element approximations to them. It is also nec-
essary to use a stabilization method capable of 
dealing with all the instabilities that the standard 
Galerkin method presents. For the particular 
case of the Navier-Stokes equations it includes 
the pressure instability (equal order interpola-

tion is used) and the instability arising in con-
vection-dominated situations. The stabilization 
technique used here is the Algebraic Subgrid 
Scale model (ASGS) of (Codina, 2001) and 
originally proposed in (Hugues, 1995). 

4. SIMULATION 

4.1 Geometrical aspects 
It is usually stated that the most time consuming 
step of a CFD simulation is the pre-process, that 
is, the geometry construction and the meshing 
of the computational domain. This was defi-
nitely the case in the present work. A 3D sur-
face of about 100 km2 was generated from the 
contour lines, 10 telescope buildings were 
drawn and six different meshes were generated. 

Two computational domains were considered 
to solve the airflow around the telescope facili-
ties. The first was a very large region with a 
relatively coarse mesh. The aerodynamic analy-
sis with this mesh was performed to obtain the 
qualitative flow pattern of the region surround-
ing the telescope. The second was a region in 
the neighborhood of the new telescope with a 
mesh finer that the former. In the following sec-
tions we describe in more detail these two 
analyses. 

4.2 Analysis of the large region 
Due to the fact that the wind information near 
the telescope facilities was unknown, the analy-
sis to obtain the flow pattern of a large region 
surrounding the telescope was carried out. This 
preliminary analysis was used to determinate 
the boundary conditions for the accurate calcu-
lation of the flow around the building, assuming 
that the flow far from the telescope is unaffected 
by it. 

The discretized domain of La Palma island 
was a section of 10 x 7.6 km with and average 
height of 1,400 m so the total surface was about 
100 km2. The main wind velocities (1 and 4 
m/s) and directions (North, East and West), ob-
tained from an experimental weather database, 
were prescribed. 

The generated mesh for this domain was 
formed by 92,000 tetrahedral elements. The 
generated surface mesh is shown in Figure 2. 
This coarse mesh was used to obtain a station-
ary solution of the flow. We knew in advance Figure 1: Impose the law of the wall on . 
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that using this mesh it is impossible to capture 
all the details of the flow. Even though the 
oscillations of the flow were not captured in the 
solution, the velocity field obtained was interpo-
lated to use it as boundary condition of the fol-
lowing analysis. 

Two samples of the obtained results are 
shown in Figures 3-4. These figures display the 
pressure distribution and the velocity vectors 
over the discretized surface of La Palma island 
for a North wind of 1m/s. 
4.3 Analysis of the region surrounding the tele-
scope building 
This discretized domain was a spherical section 
of 683,000m2 with and average height of 460m 

and the generated mesh was composed of 
150,000 tetrahedral elements. A general view of 
the discretized domain is shown in Figure 5.  

The solution obtained with this finer mesh is 
not stationary as in the previous region simu-
lated. In the computed flow pattern, multiple 
vortex shedding and flow separation were ob-
served. The results presented in this paper cor-
respond to a wind velocity of 1m/s from the 
North direction and have been carried out to the 
second possible location of the new telescope. 

 
Figure 5: Discretized domain, where the new solar tele-
scope, an optical telescope and an assistant building are 
included. 

Figure 6: Velocity field. 

Figure 7: Detail of the velocity vectors around the tele-
scope. 

Figure 2: Generated surface mesh of the large region. 

Figure 3: Pressure distribution.  

Figure 4: Velocity vectors. 
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These results are summarized in Figures 6-7. 
From the design point of view, these simula-

tions must help to decide which location is the 
best to place the telescope building. 

5. CONCLUSIONS 
In this paper a methodology to simulate large 
buildings has been presented. In particular, this 
methodology has been applied to a singular tele-
scope building, where the main goal was to de-
fine its correct location.  

This study was divided in two stages. Within 
the first, an external aerodynamic analysis of a 
large region around the telescope facilities was 
carried out. This analysis was necessary due to 
the lack of experimental wind velocity data in 
the region surrounding the building, so the main 
goal of this part was to obtain the velocity field. 
The velocity outputs of this first analysis were 
applied as boundary conditions for the flow 
analysis in the neighborhood region of the 
building telescope, within the second part of the 
study. By following this procedure, we were 
able to define an air flow pattern in a concrete 
zone starting from a weather data distant of the 
studied zone. 

The second analysis aimed to obtain the flow 
around the telescope, which gives an indication 
of possible visibility problems caused by the 
movement of particles that the air can do or 
variations in the density of the air. The analysis 
of these visibility problems in the selected sites 
will help the promoters to choose the best place 
where the new telescope might be erected. 
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