Field trialling of a new airtightness tester in a range of UK homes

A new low pressure ‘quasi-steady’ pulse technique for determining the airtightness of buildings has been developed further and compared with the standard blower-door technique for field-testing a range of typical UK homes. The reported low pressure air pulse unit (APU) has gone through several development stages related to optimizing the algorithm, pressure reference and system construction. The technique, which is compact, portable and easy to use, has been tested alongside the standard blower-door technique to measure the airtightness of a range of typical UK home types.

Airtightness Quality Management Approaches in France: end and birth of a scheme. Previous and new schemes overview and analysis

Since 2006, the French Energy Performance regulation, named RT, has been allowing two ways to justify building airtightness: either with a measurement or with the application of a quality management approach. The quality management approach certification is managed by the French Ministry in charge of construction, for which it set up a specific expert committee to assess quality management approaches. Since 2012, the justification has been compulsory for residential buildings. This obligation led to a more systematic use of certified quality management approaches.

The zero pressure paradox

The zero pressure compensation method has proven to be the best method to measure air flow rates accurately although it also has be shown that the accuracy depends on the type of air terminal device and how and where the pressure to be compensated is measured in the instrument. Although the principal of the zero pressure method implies universal applicability, in practice this does not seem to be case. This has lead us to develop the ‘extended’ zero pressure method

Detailed numerical modelling of moist air flow through a complex airtightness defect

Mastering building airtightness is essential to meet the requirements of current and future building codes, not only for saving energy but also for ensuring moisture safety. Perfect airtightness is difficult to achieve: failures are often observed, due to bad design or poor workmanship. Some published investigations proved that leaking air mostly flows through porous material and thin air channels, due to material imperfections and construction tolerances.

6 years of envelope airtightness measurements performed by French certified operators: analyses of about 65,000 tests

Since 2000, the French EP-calculations have been considering thermal losses due to building envelope airtightness. The last two regulations (RT2000 and RT2005) had included a default value for airtightness and the possibility to use a better-than-default value with a mandatory justification of this value, especially for voluntary approaches such as the BBC-Effinergie label. In 2013, strengthening the airtightness has become a requirement of the current EP-regulation (RT2012).

Thermal envelope quality versus nZEB parameters and long-term economics: the Eco-Silver House case in Ljubljana

In 2014 the first multi storey residential building planned and constructed to meet the Passivhaus Institute (Darmstadt) criteria was put in operation in Ljubljana, the capital of Slovenia. This massive-structure building is part of the FP7 EE-Highrise project, aiming to demonstrate nearly zero energy building (nZEB) technologies, an integrated design concept, and advanced systems for sustainable construction.

Tips for Improving Repeatability of Air Leakage Tests to EN and ISO Standards

Numerous tests are being performed throughout Europe. While most are or appear to be successful others have high calculated uncertainty values and others don’t correlate well when repeated by the same tester with the same equipment or where someone else does the repeated test. Some feel that equipment calibration is the key to consistent results but in most cases that it could be one of the smallest causes for lack of repeatability. We will take a look at how much different factors affect results and how to get the best results. 

Model error due to steady wind in building pressurization tests

We have analysed the steady wind model error based on a simplified building model with one leak on the windward side and one on the leeward side of the building. Our model gives an analytical expression of this error that depends on the leakage distribution and pressure coefficients. Using a test pressure of 50 Pa in this model, standard measurement protocol constraints contain the steady wind model error within about 3% and 11% with wind speeds below 6 m s-1 and 10 m s-1, respectively. At 10 Pa, the error is in the range of 35% and 60% at 6 m s-1 and 10 m s-1, respectively.

Temperature and pressure corrections for power-law coefficients of airflow through ventilation system components and leaks

The characterization of power-law coefficients of the airflow through ventilation system components and ductwork or building leaks should include corrections on the airflow rate measurement because of two phenomena: a) the temperature and pressure conditions at the flow measurement device may not be the same as those seen by the test object; b) the temperature and pressure conditions experienced by the object may differ from reference conditions. This paper gives the analytical expression of these corrections depending on the air viscosity, air density and flow exponent.

ACH and airtightness test results in the Croatian and Hungarian border region

The article presents the results of our research, which was realized under a cooperation project between the University of Pécs, Hungary and the University of Osijek, Croatia. The aim was to gather 50 Pa ACH, air tightness and spontaneous ACH information of residential houses by the Croatian and Hungarian border. The budget of the project allowed approximately 50 tests for each university; these summarized results are presented together with correlations found between the results.  

Pages