Investigating potential comfort benefits of biologically inspired building skins

Biomimicry offers opportunities to advance the development of flexible building facades. Here, the combination of external fur, bioheat transfer (blood perfusion) and internal surface evaporation are combined into a model of a commercial office building façade. Temperatures and heat transfer are calculated in a dynamic simulation for summer conditions in a temperate climate (Melbourne, Australia). Thermal comfort, in terms of PMV and PPD, is assessed and compared to a reference case. 

Indoor thermal comfort survey in campus buildings (classrooms) in Beijing for a long time

Beijing is in the Cold Climate Zone of China. This study carries out a long-term survey of indoor environmental parameters, the clothing of occupants, and the metabolic rate of occupants as well as people’s voting of their sensation in classrooms in Beijing. The study was conducted in 2011 and 2012, trying to explore people’s requirement of indoor thermal environment. Relationships between thermal parameters and people’s sensations are found. The acceptable temperature range can meet the requirements of most of users.