Evaluation of Uncertainties of Using CO2 for Studying Ventilation Performance and Indoor Airborne Contaminant Transmissions

The COVID-19 pandemic has raised concerns about indoor ventilation conditions worldwide. Monitoring CO2 concentrations in rooms has been widely used, but its relationship with outdoor air ventilation rates and ventilation performance is uncertain. Several uncertainties must be quantified, including the location and rate of CO2 sources, sensor locations, and the dynamics of the surroundings, as well as limitations of existing simulation models, such as well-mixing assumptions.

Proposal of an effort-benefit diagram to compare unit and room air-change rates applied to a literature review

The main task of every ventilation system is to dilute and extract pollutants from indoor air, most importantly in occupied space. This is usually achieved by exchanging polluted indoor air with less polluted outdoor air. In the case of a mechanical ventilation system, this process requires a fan power to be provided which is approximately proportional to the power of three to the resulting airflow. Because of this, reducing the necessary airflow to be provided by the ventilation unit e.g., by 10% would lead to a reduced power supply of about 27%.

REMARK: This Q&A was part of the AIVC special COVID-19 newsletter published in July 2021. To subscribe to the newsletter please click here.

Exist’air: airtightness measurement campaign and ventilation evaluation in 117 pre-2005 French dwellings

Between 2017 and 2018, the Centre for Studies and Expertise on Risks, the Environment, Mobility and Planning (Cerema) organized an airtightness measurement campaign in 117 multi-family collective and single-family French dwellings. These dwellings were built before 2005, that is, before the release in 2005 of the fifth French thermal regulation for new dwellings, that was the first to introduce specific requirements for airtightness.

Developing a new passive tracer gas test for air change rate measurement

Ventilation is critical in interpreting indoor air quality (IAQ), yet few IAQ assessments report ventilation rates; even when they do, the measurement method is often not fully described. Most ventilation assessments use a tracer gas test (TGT) to measure total air change rate. In a TGT, the indoor air is marked with an easily identifiable gas (tracer) so that the air change rate can be inferred by monitoring the tracer’s injection rate and concentration.

Wind-induced pressure coefficients on buildings dedicated to air change rate assessment with CFD tool in complex urban areas

The paper presents a numerical methodology to assess the natural ventilation. UrbaWind is an automatic computational fluid dynamics code. It was developed to model the wind in urban environments. The turbulence modelling, namely the dependence of turbulence length on the distance from wall, and the model constants were calibrated in order to reproduce with good agreements flow separation around buildings walls and pressure coefficient field on façades. Numerical results match well with the experiments: separation patterns and pressure field on walls in dense urban areas.

A multi-criterion method for examining the health and energy impacts of air change rates in dwellings

The global requirement to dramatically reduce greenhouse gas emissions places an increased emphasis on reducing energy demand associated with dwellings. Where improved energy efficiency is in part achieved by tighter control of ventilation, there is potential for both positive and negative impacts on health from reduced air exchange in the indoor environment. Although increased air tightness may help improve indoor temperatures and reduce the ingress of pollutants from the external environment, it may increase concentrations of those from indoor sources.

A Measurement Study on the Indoor Climate of a College Classroom

To clarify the indoor climate in Japanese college classrooms, an air-conditioned, mechanically ventilated classroom of a university was surveyed. Temperatures, humidity and carbon dioxide (CO2) concentration in winter and summer were measured before, during and after lessons. The airtightness of the room and the airflow rate of the ventilation system were also measured. In winter, at an outdoor air temperature around 0 ºC and with the thermostat temperature of the air conditioners set to 30 ºC, the vertical difference in room air temperature exceeded 10 ºC.

Effect of Residential Ventilation Techniques for Hot and Humid Climates on Indoor Concentrations of Volatile Organic Compounds

Mechanical ventilation may be necessary to provide adequate ventilation in new houses due to the relatively low rates of infiltration achieved in new construction. However, in hot and humid climates, increased ventilation may raise indoor humidity to an undesirable level. A study was undertaken by the Florida Solar Energy Center (FSEC) to evaluate the humidity effects of different mechanical ventilation strategies for such climates. The study was conducted in a new 141-m2 manufactured house sited at the FSEC campus.

Volatile Organic Compound Concentrations and Emission Rates Measured over One Year in a New Manufactured House

A study to measure indoor concentrations and emission rates of volatile organic compounds (VOCs), including formaldehyde, was conducted in a new, unoccupied manufactured house installed at the National Institute of Standards and Technology (NIST) campus. The house was instrumented to continuously monitor indoor temperature and relative humidity, heating and air conditioning system operation, and outdoor weather. It also was equipped with an automated tracer gas injection and detection system to estimate air change rates every 2 h.

Pages