The current design standard BS EN ISO 7730 is based upon the work of Fanger dated 1995, dealing with a steady-state human heat balance model that leads to a prediction of the sensation of human thermal comfort for a given set of thermal conditions. That model was then developed for "conventional" environments. But is the current standard still applicable to more sophisticated environments such as offices with chilled ceiling, in combination with displacement ventilation ? This paper presents findings from a study that sought to answer that question.
This report describes the characteristics of a thermodynamic concept, exergy, in association with building heating and cooling systems. It introduces the various forms of exergy and the mathematical formulations used to evaluate them. It gives an example of exergy calculation for space heating systems.
The combination of an open wet cooling tower with chilled ceilings is a CFC free, cheap and low energy cooling solution. The efficiency of this alternative to mechanical cooling is very dependent on climate. There is a need for specific tools to help designers to size the system and to estimate its energy and water consumption. A building simulation tool, called ConsoClim, has been used to predict the performance of this system for different French climatic locations, thermal inertia, internal loads and solar gains.
To evaluate the impact of the natural ventilation of the air cavity in the prototype of the glazing system being studied in the frame of the project SOLVENT, funded in part by the Commission of the European Union, a prototype of a reversible naturally ventilated glazing system. The system consists of a double (clear and tinted) glazing. In the summer position the tinted glazing is in the outer position and the cavity is open to the outside air at both top and bottom extremes.
A condensing device allows to avoid condensation on cooling ceilings in rooms with humid air. It uses thermoelectric modules in contact with the cooling panels. The pumped heat is transferred into the cooling ceiling to keep its temperature above the dew point. Tests have been performed in a full-scale chamber. A set of condensing units was mounted on a standard hydraulic cooling ceiling. The control of temperature is achieved by regulating the mass flow of the water. By this method the loss of efficiency of the cooling panels is fully compensated.
The objective of PV-cooling project was to develop low electricity consumption cooling systems for dwellings and office building, powered through photovoltaic (PV) electricity. Two systems have been developed, one using PV and evaporative air-cooling, the other using PV and ground cooling through buried pipes.
Three flow regimes encountered in hybrid ventilation systems, depending on the external temperature along with the imposed heating and cooling loads, are investigated . A theoretical model is used and small-scale laboratory experiments are visualised. The transitions between those naturally ventilated flows may vary according the seasons.
The aim of this study was to define whether energy savings and comfortable conditions are achievable along with a reduction or even suppression of the mechanical cooling systems.Three different cooling systems (mechanical standard air conditioning, hybrid cooling, mechanical ventilation cooling) were simulated for a typical US office space under 40 different US climatic data, to calculate energy consumptions.
The coupled thermal/airflow simulation software CONTAM97R was used to evaluate the performance of a naturally ventilated office building recently build in Entschede (The Netherlands), for which detailed measurements results within the Natvent project had already been published.
Tests have been performed on several ceiling air diffusers supplied with low air temperatures (6 to 16°C - 90% humidity) to study water vapour condensation on diffusers surface. Results show that a supply air temperature of 11°C avoids most of condensatio