Investigating potential comfort benefits of biologically inspired building skins

Biomimicry offers opportunities to advance the development of flexible building facades. Here, the combination of external fur, bioheat transfer (blood perfusion) and internal surface evaporation are combined into a model of a commercial office building façade. Temperatures and heat transfer are calculated in a dynamic simulation for summer conditions in a temperate climate (Melbourne, Australia). Thermal comfort, in terms of PMV and PPD, is assessed and compared to a reference case. 

The effect of window position and window size on the energy demand for heating, cooling and electric lighting

The amount of sunlight and daylight through the façade is a key factor in new façade design. Designing a new façade, based on the idea that a façade should be able to function and perform mostly autonomously (i.e.

Façade-integrated ventilation systems in nordic climate

The work evaluates the applicability of façade-integrated ventilation systems in a Nordic climate. For this purpose the state of the art of façade-integrated ventilation (FIV) and demands for ventilation system in Norway and criteria for an comprehensive evaluation are identified. In this framework agreements between national requirements and system-specific performance are assessed. The evaluation investigates indoor environment and comfort with focus on aspects of indoor air quality.

Influence of solar radiation on heat and air flow transfers in double skin facades with venetian blinds.

A comprehensive modelling of a compact double skin facade equipped with a venetian blind is proposed here. The modelling is done using CFD approach to asses the air movement inside the ventilated facade channel and appropriate radiation model for long and short wave exchanges. The impact of solar radiation on temperature and velocity fields as a function of some parameters such as beam radiation incidence angle, blade angle of solar protection, etc. is analysed.

Using Double-Skin Solar Energy Façade for Pre-Heating of Ventilating Air

The paper deals with on-site measurements of energy benefits resulting from exploitation of double-skin solar energy façade for pre-heating of ventilating air. The southwards oriented façade with total area of 1135 m2 on a new building of Moravian Library

Multi-Storey Double-Skin Façades Influence on Surface Pressure Distribution

Double-skin façades (DSF) are widely used as an architectural solution to both control the thermal behaviour and allow for the possibility of using natural ventilation techniques on buildings. DSF are characterized by having at least two membranes between

Implementation of triple layer facade in Singapore

During the construction of Dhoby Ghaut Station on the MRT North-East line a 10-storeycommercial development was completed. The facade is a vented cavity of a triple glazedconstruction comprising of an Insulated Glazed Unit, cavity blind with natural ventilation, anda single internal operable glazed layer. This type of facade technology has been used inEurope; however, its relevance in tropical climates where buildings are cooling-dominatedneeds to be carefully considered.

Development and sizing of a multicriterion facade element through different luminous, thermal and airflow tools

People that work in office buildings have new needs in terms of comfort within their work place. We suggest to develop a multicriteria office cell façade, allowing to control luminous, thermal and airflow parameters. It will be controlled to offer global

Energy performance assessment of single storey multiple-skin facades

Multiple-skin facades were studied by means of experiments and numerical simulations. Experimental work was done on naturally and mechanically ventilated single storey multiple skin facades. Field experiments showed that good design and excellent workmanship are of crucial importance to obtain the desired performance. The measurements enables an insight into the complex nature of the airflow in naturally ventilated cavities. Measurements on a controlled experimental set-up provided data to develop and validate a numerical model. This model was then implemented in an energy simulation tool.

A synergy-facade in a paslink test cell

This paper describes a modular facade system, which supplies the room behind with the necessary amounts of heat, light and fresh air. Aims of the development of this facade were both to achieve a high degree of comfort for the users and to save energy in comparison to a conventional facade. The experimental investigations to assess and to optimize the facade system were performed in a PASLINK test cell. These test cells allow measurements of the thermal and solar performance of facade elements in original dimensions and under natural climate conditions.

Pages