Most dwellings in the United States are ventilated primarily through leaks in the building shell (i.e., infiltration) rather than by whole-house mechanical ventilation systems. Consequently, quantification of envelope air-tightness is critical to determining how much energy is being lost through infiltration and how much infiltration is contributing toward ventilation requirements. Envelope air tightness and air leakage can be determined from fan pressurization measurements with a blower door. Tens of thousands of unique fan pressurization measurements have been made of U.S.
This report summarizes the state of the art on building air tightness by reviewing the current and recent literature on both research and practice. The focus of this report is on techniques to measure the tightness of the building envelope and on what has been learned by doing so. This report reviews over 100 of the most important publications relating to the topic. The report covered the fundamentals of air leakage including the hydrodynamics of leaks, which has led to all of the measurement techniques currently in use.
Thirty-one independent fan pressurization measurement series were performed on seven apartments in three family housing buildings at Fort Riley, Kansas, using four protocols. The tests followed procedures in new or revised fan pressurization standards by the International Standards Organization (ISO), American Society for Testing and Materials (ASTM) and Canadian General Standards Board (CGSB). In addition, the effect of interzonal flow was considered. The three standards gave similar results.
ASTM has recently standardized a methodology for measuring the leakage of residential air distribution systems to unconditioned zones. The standard includes two alternative leakage measurement techniques, one of which requires only a blower door, whereas the second technique requires a flowcapture hood as well as a blower door. This paper reports on the results of field measurements in 30 houses using both measurement techniques, and analyzes the relative strengths and weaknesses of the two techniques.
Modern one-family houses in Scandinavia built before 1980 are often naturally ventilated and heated by electric baseboard heaters. The overall supply of fresh air is often inadequate during the heating season in many of these houses. Long periods of time individual rooms might get too little fresh air. The performance of a natural ventilation system is very much dependant upon the overall airtightness and the distribution of the airtightness of the building and the weather.
Mechanical systems which use common ducts for combined heating and ventilating functions are becoming popular in the Pacific Northwest (U.S.). These systems range from simple fresh-air inlets ducted to the return side of a forced air heating s stem to more complex heat recovery ventilation systems utilizing the K eating ducts for air distribution. Typical integrated systems do not have heat recovery capability.
Modern one-family houses in Scandinavia are often ventilated by an exhaust fan. Most of the outdoor air probably enters through whatever cracks and openings there are and only a small part enters through the supply vents in many of these houses. The overall supply of outdoor air might be adequate, but some rooms often do not get enough of outdoor air. The constant concentration tracer gas technique was used to examine the supply of outdoor air. Fan pressurization combined with infrared photography were employed to characterize the air leakage of the building.