Passive solar buildings are expected to provide their intended functions, safely and without adverse health effects, and at substantial energy savings compared to conventional buildings. Moreover, passive solar buildings are frequently considered as appropriate technology in parts of the world where the incidence rates of diseases associated with indoor exposures may be the highest.
The requirements to know indoor thermal comfort ask for a more detailed study of room temperature responses. Although CFO (Computational Fluid Dynamics) techniques can be applied successfully to the prediction of indoor temperature distributions, using them for the dynamic calculation of temperatures and air flows is still a very expensive expenditure. For indoor climate control systems, it is necessary to make quick calculations of the dynamic temperature distributions in a room.
To control the indoor thermal environment within the comfortable range, the dynamic temperature distributions and flows of room air must be correctly predicted. While the CFO (Computational Fluid Dynamics) technique can be used to carry out such a prediction task, its drawback is also obvious: too time-consuming. To solve this problem, the dynamic temperature distributions can be predicted with some fixed air flow fields calculated with CFD codes. That is, sacrifice the dynamics of indoor air flows and only preserve the dynamics of the temperature distributions.
In France, air conditioning of offices is often required especially in areas with high noise levels and in the Mediterranean climates. Evaporative cooling systems appear able to give a cost effective solution to the growing demand for summer comfort: hence, the CSTB and Gaz de France are currently conducting a joint research on the efficiency of such systems. On the basis of a comfort criteria, this have been done by computer simulations taking into account different kinds of systems, buildings, and climatic areas.