Describes experimental studies of the natural ventilation of four similar houses with different ventilating systems. Describes houses and gives experimental procedure and results of measurements of air-change-rates using hydrogen as a tracer gas.Shows variation in air-change-rates are due mainly to changes in wind speed and that wind direction and temperature difference are secondary factors. Estimates rate of heat loss as a functionof wind speed. Discusses relationship between measured pressure differences and wind speed and direction.
Describes experiments made to determine the air infiltration rate through revolving doors. Estimates infiltration by combining air leakage past the door seals with infiltration caused by the revolving of the door. Finds that air exchange depends on door speed and temperature differential and somewhat on wind and indoor air velocities. Gives flow past the door seals as function of indoor -outdoor pressure differential and flow related to door movement for a motor- driven revolving door and for a manually operated door for traffic rates up to 2000 people per hour.
Gives an account of a method of measuring the ventilation rate of a room using hydrogen as a tracer gas. Describes katharometer used to detect the gas and the experimental procedure. Results agree well with those calculated by orifice plate method.
Using nitrous oxide as a tracer, the author made 390 measurements of ventilation rates in seven closed rooms of six houses, in Melbourne, Australia. Half of the observations were taken when the wall ventilators were sealed, in order to explore their influence on room ventilation. Results for each room, grouped in ranges of wind direction and according to whether ventilators were open or closed, are shown as regression curveson plots of ventilation rate against wind speed. The ventilators are shown to have only a slight effect on ventilation.