Comparison of the accuracy of detailed and simple model of air infiltration.

Simulation is proving more and more important in building physics. Programs of different levels of complexity are today available for researchers and designers to model and plan buildings. But the accuracy of the output is not usually provided as a common result. This paper is a short summary of a dissertation [1] focused on the accuracy of the simulation outputs as a function of the accuracy of the input parameters.

Two-zones model for predicting passive stack ventilation in multi-storey dwellings.

Proper dimensioning of natural ventilation system for multi-storey buildings is a critical matter, because the air flow rate depends on many parameters as outdoor temperature, wind, distribution of air inlets and envelope air leakage, characteristics of outlets and cowls. The computer code GAILNE BIZONE predicts the ventilation rates in multi-storey dwellings equipped with passive stack ventilation system. Each level is treated as a two-zones configuration, but each zone is linked to the collective ventilation shaft of the building.

Modelling fluctuating air flows through building cracks.

The paper summarises an approach to determining the equations governing the air flow through simple cracks subject to fluctuating pressures. To this end, an experimental arrangement has been developed that enables the laboratory simulation of fluctuating driving pressure signals. A standard straight crack was subjected to this signal, which fluctuates in both magnitude and frequency. An air control system permits a high level of fluctuating pressure control.

An overview of combined modelling of heat transport and air movement.

A fundamental objective of this report is to investigate the techniques used in the design and research fields for the evaluation of thermal and air flow simulations. The scope is restricted to the whole building rather than flow and heat transfer within individual structural elements (e.g. cavity walls). Considerable developments are taking place in the field of air flow and thermal simulation. Rather than present an in-depth study of these developments, this report concentrates on the rather more general aspects of the combined simulation.

Estimation of air infiltration and building thermal performance.

This paper presents the estimation of air infiltration in a building using the COMIS multi-zone model. The applicability of this information in the design of buildings is demonstrated and the effect of air infiltration in the thermal performance of buildings is investigated. An integrated method incorporating both air infiltration estimation and building thermal simulation is proposed.

Pages