Discusses use of long boundary layer wind tunnel to produce a more realistic model of natural wind than that obtained in conventional aeronautical wind tunnel. Reports tests made tofind wind velocity profile and model tests to find dynamic response to wind loads and local pressures on buildings. Finds aeroelastic model response in turbulent flow is markedly different from that in smooth uniform velocity. Concludes that adequate simulation of natural wind has been obtained. Finds comparison between model and full-scale tests is encouraging.
Describes experimental techniques used to produce turbulent boundary layers in a wind tunnel. Gives model law for velocity profile in a turbulent flow over a rough surface. Describes wind tunnel, five tunnel coatings used to generate turbulence, themodels and instrumentation. Gives as an example the test results from a model of house with desk roof.
Describes method of estimating roughness required to generate velocity profile of a given shape with a boundary layer of agiven depth. Uses data correlation for the wall stress associated with very rough boundaries and a semi-empirical calculation method to calculate the shape of boundary layers in exact equilibrium with the roughness beneath them. Results can be summarized in a single figure which relates shape factor of boundary layer to height of roughness elements and their spacing
Presents measurements of the mean and fluctuating pressure field acting on two-dimensional square cylinder in uniform and turbulent flows. Shows the addition of turbulence to the flow raises the base pressure and reduces thedrag of the body. Suggests this is attributable to the manner in which increased turbulence intensity thickens the shear layers, which causes them tobe deflected by the downstream corners of the body and results in the downstream movement of the vortex formation region.
The two-storey house at Aylesbury, England, built by the Building Research Establishment for the full-scale measurement of wind pressures has been modelled at 1:500 scale in a boundary layer wind tunnel to verify the reliability of simulation forlow-rise buildings. Describes wind tunnel tests of buildings models of 5 and 22.5 roof slope. Compares surface pressure measurements with full-scale data for various wall and roof locations. For the model terrain best modelling conditions, the results show agreement which is encouraging.
Describes experimental techniques used in the low-speed wind tunnels at the Building Research Station when studying air flow around buildings and pressure distribution over their surfaces. Includes flow visualisation both in the stream and in boundary layers over surfaces, velocity measurements around small-scale models, and methods of building models containing pressure tappings. Gives names of suppliers and details of some instruments and equipments. Describes in an appendix how a simply constructed heated-sphere anemometer is made.
Describes method for simulating natural wind boundary layer in a conventional, short working section, aeronautical wind tunnel. Boundary layers, which may be as thick as one-half of the working section height are generated by spires at the working section inlet. This approach is used to measure mean wind pressures and pressure spectra on a model of a tall building in downtown Montreal. Measurements are repeated using the long roughness fetch technique for boundary layer generation and results from the two methods compared.
Describes typical town centre developments in which a problem of wind environment has arisen, and gives a brief account of the investigation of specific cases. Summarises broad conclusions of 20 special cases. Describes series of investigations intoair-flow around small groups of idealised model buildings and compares model with full-scale measurements. Outlines design method for use in planning layout of small groups of buildings. Discusses future research needs.
Describes the ventilation of buildings by analogy with electric circuits and derives expressions for ventilation with and without flow through ducts in the roof. Finds that in general ventilation rate will vary linearly with wind velocity. Considers the effect of shelter belts on wind velocity and derives expression for sheltered ventilation rate. Suggests that eddy motion caused by shelters may be important. Gives measurements made on models in wind tunnels to show the affect on wind pressure of sheltering buildings at various distances.
Reports wind-tunnel tests on simple cubical model made of plastic to see effect of outside wall leakage on internal and external pressures. Three wind directions are studied and results extended to smoke-control problems. A method has been developed to modify the roof-vent design calculations to takewind effects into account. Shows failure of vent systems may bemore common than would be expected from current design methods.Concludes that leakage characteristics do not have any appreciable effect on outside wind pressures but do affect strongly the internal pressures.