On the combined application of thermal and CFD modelling in the design of naturally ventilated industrial halls.

For indoor thermal environment engineering and heating system dimensioning, naturally ventilated spaces impose difficulties due to the interaction of indoor and outdoor air flows and due to their variation in time and space. Thermal building simulation models basically assume mixed air flow conditions in the individual zones, but are able to dynamically model the building masses and the heat exchange between them and the zone air.

Quantification of uncertainty in thermal building simulation - Part 1: Stochastic building model.

In order to quantify uncertainty in thermal building simulation stochastic modelling is applied on a building model. An application of stochastic differential equations is presented in Part I comprising a general heat balance for an arbitrary number of loads and zones in a building to determine the thermal behaviour under random conditions. Randomness in the input as well as the model coefficients is considered. Two different approaches are presented namely equations for first and second order time varying statistical moments and Monte Carlo Simulation.

Finite element calculation of natural ventilation.

The intention of this paper is not to compare discretization schemes but to show some advantages of a stabilized finite element method for modelling natural ventilation. Based on the finite element theory we present a formulation of boundary conditions that can be used for most ventilation openings in buildings. Stationary as well as transient situations can be considered without modelling of the outdoor space. Mathematical background and implementation details are discussed. Results are presented for ventilation of a living room at typical outdoor conditions.

Numerical simulation of transient effects of window openings.

This work is centered on the transient analysis of natural ventilation provided by a single side opening when only indoor-outdoor temperature differences are present (no wind). Using both simplified "engineering" models and a CFD commercial code (2D), different cases have been examined by varying indoor-outdoor temperature difference, window size, and including or not a heating appliance in the room.

Some examples of solution multiplicity in natural ventilation.

This paper shows that under certain conditions, multiple solutions for the flow rate exist in a natural ventilation system, induced by the non-linear interaction between buoyancy and wind forces. Under certain physical simplifications, the system is governed in steady state by a non-linear algebraic equation or a system of equations. Three examples are given here: a single-zone building with two openings, a channel with two end openings, and a two-zone building with two openings in each zone. Analytical and numerical solutions are presented.

Emissions of VOCs from building materials and the indoor air quality of a new naturally ventilated office building.

This study investigated the sources and concentrations of volatile organic compounds (VOCs) including formaldehyde in the air of a new office and conference centre building. The building is naturally ventilated, and was designed to demonstrate a number of innovative approaches to environmental design. Occupant surveys have shown a high level of occupant satisfaction with the indoor environment.

Validation of a new integrated design tool for naturally ventilated buildings.

In many cases natural ventilation is used to ensure an acceptable indoor environment. However it is difficult to design a building for acceptable ventilation rates and indoor comfort without the proper tools or guidelines. The passive building simulation tool Building Toolbox was extended with natural ventilation models for the design of natural ventilated buildings. The simulation tool was verified with actual measurements during three case studies to ensure its integrity and to illustrate its applicability in this field.

Pages