Submitted by Maria.Kapsalaki on Tue, 06/27/2023 - 13:48
Overheating has become a recurring problem in airtight and highly insulated buildings even in moderate climates. This study aims to analyze thermal comfort and thermal resilience in an office building during summer and mid-seasons by means of dynamic simulations. Thermal comfort assessment shows, this office building without improvements has a ‘good’ indoor climate for 79.6% of total occupied hours.
Submitted by Maria.Kapsalaki on Mon, 06/26/2023 - 10:13
PCM (phase change materials) is an innovative technology and an effective method for improving the thermal mass of buildings owing to it possesses the property of large thermal capacity within a limited temperature range, which is similar to an isothermal energy tank. However, most of the previous studies focused on the combination of PCM and walls that the utilization potential of rooftop is lack of concern though there is a significant amount of heat gains from rooftop.
Submitted by Maria.Kapsalaki on Thu, 03/02/2023 - 14:55
Airtight and highly insulated buildings are subjected to overheating risks, even in moderate climates, due to unforeseeable events like frequent heatwaves and power outages. Educational buildings share a major portion of building stocks and a large percentage of the energy is expended in maintaining thermal comfort in these buildings. Overheating risks in educational buildings can lead to heat-stress and negatively impact the health conditions and also cognitive performance of the occupants.
Submitted by Maria.Kapsalaki on Thu, 03/02/2023 - 14:53
The use of the word “resilience” has increased significantly since 2010, however, there is a lack of understanding around 1) how thermal resilience is defined (where some definitions were offered only recently) and 2) what distinguishes it from typical overheating assessments. In addition to this, there is a lack of uptake in the remote monitoring industry (which uses low-cost solutions) when it comes to typical parameters used in thermal comfort studies and there is need to demonstrate how resilience performance can be reported going forward.
In the framework of The Trento EEMI Bauhaus Week, the European Mortgage Federation - European Covered Bond Council (EMF-ECBC) released a video-”call to action” (for distribution to 2000 banks and 5000 major companies) about the decarbonisation of buildings and the heat mitigation in cities.
Submitted by Maria.Kapsalaki on Thu, 02/13/2020 - 09:48
Overheating in buildings is expected to increase as global warming continues. This could lead to heatrelated problems ranging from thermal-discomfort and productivity-reduction to illness as well as death. From the indoor-overheating point of view, the sensitivity of 9,216 Dutch dwelling-case to the climate change is quantified and ranked using detailed simulation and post-processing calculations. The results show that the sensitivity depends significantly on the dwelling’s design/operation characteristics. Minimally-ventilated dwellings are the most sensitive ones.
Submitted by Maria.Kapsalaki on Thu, 02/13/2020 - 09:22
The increasing number of highly insulated and air tight buildings leads to the concern of indoor environment overheating and related comfort and health issues. This can already happen in a temperate climate as found in the Netherlands. This work studies the ventilative cooling process as a possibility to avoid overheated dwellings. A monitored dutch passive house was modelled in Trnsys and the impact of increasing air flow rates on indoor temperatures was simulated. The most overheated zone was chosen to be analysed.
Submitted by Maria.Kapsalaki on Fri, 02/07/2020 - 09:39
Regional climate change in cities is the most documented phenomenon of climate change . Higher urban temperatures are documented experimentally for more than 450 major cities in the world. Numerous investigations demonstrate that the mean magnitude of the temperature increase may exceed 4-6 C, while at the peak it may exceed 10 C. The serious increase of the frequency and the strength of heat waves creates strong synergies between the global and regional climate change and intensify the magnitude of the overheating
Submitted by Maria.Kapsalaki on Wed, 04/17/2019 - 14:59
Advancing energy efficient renovation solutions in buildings necessitate adopting high-insulation and airtightness to avoid heat loss through transmission and infiltration, which can result in overheating. Elevated indoor temperatures have a highly negative effect on building occupants’ health, wellbeing and productivity. With the possibility of remote working, people spend more time at home, and therefore addressing the elevated indoor temperatures and the overheating risks in residential buildings proves to be essential.