A standard for minimum ventilation.

The air infiltration associated with ventilation in buildings is recognized in ASHRAE Standard 62-1981, Ventilation for Acceptable Indoor Air Quality. In the light of recent trends toward increasingly tight housing, which limits air infiltration for ventilation, dependence on this source of outside air is onepoint that must be carefully considered in the Revised Standard. Other points to be considered are ventilation efficiency, necessary dilution of particulates and other pollutants, and how changes in humidity, air temperature and local heating may alter pollution levels in buildings.

IEA Annex IX 'Minimum Ventilation Rates' - Survey and Outlook.

Eleven countries are cooperating to establish guidelines for minimum ventilation rates which are sufficiently large to meet the demand for outdoor air in buildings without unnecessarily wasting energy. The most important pollutants have been identified as: carbon dioxide, tobacco smoke, formaldehyde, radon, moisture, body odour, organic vapours and gases, combustion products and particulates. To a certain degree some of thesesubstances can be used as indicators for acceptable air quality to establish minimum ventilation rates.

The IEA project on minimum ventilation rates. IEA-Projekt 'Minimale Luftungsraten'

The minimum fresh air requirements needed for perfect indoor air quality are being studied and these will form the basis of the Swiss Guidelines for Ventilation. An optimization between the need to reduce heat loss and fresh air requirements for health is the aim. Pollutants in indoor air, such as formaldehydes, radon, carbon dioxide, tobacco smoke, carbon monoxide, nitrogen dioxide and particulates, have to be considered.

Controlling indoor air pollution from tobacco smoke - models and measurements

Examines the effects of smoking rate, ventilation, surface deposition, and air cleaning on the indoor concentrations of respirable particulate matter and carbon monoxide generated by cigarette smoke. A general mass balance model is presented which has been extended to include the concept of ventilation efficiency. Following a review of the source and removal terms associated with respirable particulates and carbon monoxide, we compare model predictions to various health guidelines.

Characterisation of radon levels in indoor air

Describes the different types of monitoring and sampling techniques that can determine the radiation burden of the general public from radon and its decay products. This is accomplished by measuring the range and distribution of radon and rad

Analysis of low particulate size concentration levels in office environments

Simulation methods and test results are presented here to confirm projections of actual total suspended particulate (TSP) concentration levels for representative office buildings, with particular emphasis on the 0.3 to 5 micron particulate si

Plan and preliminary results of the U.S. Environmental Agency's Indoor Air Monitoring Program - 1982

The U.S. EPA initiated an indoor air monitoring program in 1982, concentrating on commercial or public-access buildings (homes for the elderly, schools, and office buildings). Several buildings from each category are sampled over 2-3 day peri

Controlling indoor air pollution in energy-efficient environments.

Shows that recent investigation has revealed harmful pollutants in greater concentrations in energy-conserving buildings then in the surrounding outdoor air. Some of the pollutants found include particulate matter, carbon monoxide, formaldehyde, nitrogen dioxide and radioactive radon. In the use of some construction materials, measures intended to reduce energy consumption may contribute to the buildup of indoor air pollution. Reviews characteristics of indoor pollutants and major methods of control.

Comparison of concentrations over 24 hours of SO2 and of dark smoke inside and outside a building as a function of its occupation. Comparaison des concentrations de 24h. de SO2 et des fumees noires a l'exterieur et a l'interieur d'un batiment en fonction

Measurements of dark smoke and SO2 concentration made inside and outside a school showed no significant difference in the case of smoke but SO2 concentrations indoors were only 71% of those outside. Holiday periods, when the buildings were unoccupied gave similar results to those periods when thepupils (non-smokers) were present.

Measurement of air leakage of houses.

Reports tests of the air leakage of 24 houses made using a fan to depressurize each house. Gives a table of results including indoor humidity, air-particulate levels, energy consumption and comfort conditions for each house. Comparison of test results with calculated values for air leakage suggests than doors and windows account for only a fraction of the total. Finds some correlation between indoor humidity, air-particulate levels and leakage.

Pages