The passive perfluorocarbon tracer (PFT) technique for determining air infiltration rates into homes and buildings was evaluated in an environmental chamber.
A new method for measuring interzonal air movement, using up to four different tracer gases simultaneously, has been developed at the Polytechnic of Central London and tested in a solar air-heated experimental house in Peterborough, UK.
A simple means for determining air infiltration rates into homes and buildings for assessment of indoor air quality and energy conservation measures, based on a passive perfluorocarbon tracer (PFT) technique, was evaluated in a well-defined environmental chamber under experimental conditions of 1) constant temperature and ventilation rate, 2) constant temperature, variable ventilation
rate, and 3) variable temperature, constant ventilation rate.
A miniature passive perfluorocarbon tracer system was successfully applied to the determination of air infiltration and exfiltration rates from each zone of a multizoned structure, as well as the air exchange rates between zones inhomes, multiple unit condominiums, naturally ventilated apartment buildings, and large commercial buildings with multiple air-handling systems. Use of the multizone technique in indoor air quality assessments and air-handling system stratification studies appears to be quite feasible with the availability of this measuring system.
The R-2000 Super Energy-Efficient Home Program is a cooperative industry/government initiative sponsored by Energy, Mines and Resources Canada (EMR) and delivered by the Canadian Home Builders Association. The program supports building industry development, training of builders and the construction of energy-efficient houses incorporating high levels of insulation, a well sealed air barrier and mechanical ventilati on systems with heat recovery. In 1983, with assistance from the Buildings Energy Conservation Sub-Committee (B.E.C.S.
Pacific Power and Light Company and Battelle PNW Laboratories have completed a project which investigated residential ventilation rates. The results presented in the report discuss evaluation of methods used to measure ventilation rates, the behavior of ventilation rates in residences and the comparison of ventilation rates among home construction types. The perfluorocarbon tracer gas decay technique for measuring ventilation rates was concluded to be the best method used during the testing.
Reduction in air leakage rates due to weatherization of homes can be determined by fan pressurization and tracer gas techniques, but only the latter gives the results under normal occupancy conditions. Assessment of such rates measured before and after weatherization must consider their dependence on wind speeds and inside-outside temperature differences.