The results of a prediction method for calculating ventilation rates in a detached house are compared with experimental measurements described in aprevious paper. The method is capable of giving good agreement for a wide range of ventilation conditions. The need is demonstrated for further work in two important areas - the spatial distribution of background areas and the effect of turbulence.
Gives a brief survey of aspects of research into air infiltration. Discusses methods of measurement of ventilation rates and of building leakiness, covering the infrasonic and pressurisation methods of leakage testing, and thermography and tracer gas methods of measuring ventilation rates. Describes the available techniques for predicting leakiness and infiltration rates, and discusses their ease of application and accuracy. Concludes that the achievements of research to date are sound methods of measuring leakiness and infiltration rates.
Reports on an investigation concerning ventilation and energy conservation in dwellings, which was financed by the EEC and the Dutch Ministry for Housing and Public Works. Concludes that:< 1. In single family houses air flow through cracks and joints causes more ventilation then is required.< 2. Flats with more airtight construction provide better control of ventilation.< 3. The amount of wind protection plays a part as important as airtightness.< 4.
A simple method for generating values of the monthly mean wind speed from Caton's annual wind speed map has been developed. Gives details of method. Results have been checked against observation as far as the limited data tohand will allow. When derived wind speeds are inserted into the average day computer programs developed in the Department of Building Science at Sheffield University the predicted air temperatures agree reasonably closely with observed air temperatures. Concludes method is practicable for applications in building energy studies.