Submitted by Maria.Kapsalaki on Fri, 10/25/2013 - 16:55
It is only comparatively recently, since the development of mechanical ventilation and refrigeration, that it has become possible to completely control the air quality and thermal environment inside buildings, irrespective of outdoor conditions. However, such control is an energy intensive process that requires reliable energy supply. Concerns about future security of conventional supply, combined with the impact of fossil fuel emissions on global warming, has resulted in renewed emphasis on building energy efficiency.
Submitted by Maria.Kapsalaki on Fri, 10/25/2013 - 16:53
The reduction of carbon dioxide emission due to energy consumption in the household sector is an urgent task, worldwide. As a measure to respond to the task, a new regulation has just been enforced since April 2009, in Japan. This regulation evaluates the energy performance of detached houses by estimating the primary energy consumption for different uses, namely, heating, cooling, ventilation, domestic hot water and lighting.
Possibilities for harmonising controls on the radioactivity of building materials within the EuropeanUnion are being discussed in the Working Party on Natural Radiation Sources established by theArticle 31 Group of Experts (Euratom Treaty). The Working Party is preparing a document to aid theArticle 31 Expert Group and the European Commission in considering possible recommendations andtechnical guidance to the Member States for the implementation of the new Basic Safety StandardsDirective concerning the radioactivity of building materials.
The requirements for thermostats are increasing in the U.S. for a combination of reasons. Firstly,energy conservation and Demand Response programs are requiring thermostats to have morecomplex controls that can communicate with electric utilities. Other pressures are caused by theincreasing sophistication in U.S. homes such as systems for mechanical ventilation, economizers andventilation cooling that interact with operation of heating and cooling systems via thermostat controls.In order to meet these challenges, U.S.
As heat exchanges through building envelopes and undesirable internal gains have been reduced in the last years due to energy conservation efforts, the importance of the energy needed to heat, cool and move outdoor air for ventilation has increased in relative tem1s. This study, developed within the European project TIP-VENT (JOULE) aims to study the impact of ventilation air flow rates upon the energy needs of typical buildings. Five real buildings were selected as case-studies: A hotel, an auditorium, an office building, a single-family residence and an apartment building.