Submitted by Maria.Kapsalaki on Wed, 02/05/2020 - 16:39
Many studies have shown that the use of mixed-mode cooling can bring down the cooling load significantly while maintaining satisfactory in door air quality and thermal comfort. But there is little information available concerning mixed-mode cooling in China. Thus, basing on design parameters of design standard, A series of computer simulation of a typical mixed-cooling apartment in Guilin, lies south-west of China, was conducted by Eneryplus and Climate Consultant software.
Submitted by Maria.Kapsalaki on Tue, 02/04/2020 - 18:43
Adaptive thermal comfort model has been widely used to evaluate the thermal comfort level of natural ventilation buildings.However, current adaptive standards offer a simple linear relationship between the outdoor temperature and the indoor comfort temperature,ignoring the influence of solar radiation.
Submitted by Maria.Kapsalaki on Wed, 01/29/2020 - 14:51
The indoor thermal comfort and air quality in classrooms have become of interest worldwide, predominantly because of their influence on children’s health, learning performance and productivity. Growing concerns with building energy efficiency emphasize the significance of this topic. This paper illustrates the outcome of a field study conducted in secondary school classrooms in Sydney, Australia, during the school year in 2018/2019.
Submitted by Maria.Kapsalaki on Wed, 01/29/2020 - 14:43
The new schools in Canada are designed to improve indoor environment quality while achieving a much better energy performance than the code compliance requirements.
Submitted by Maria.Kapsalaki on Wed, 01/29/2020 - 14:41
People spend the majority of their time in their own homes and so the indoor environmental conditions are an important determinant of population health and wellbeing and have economic consequences. Chile is undergoing rapid economic growth and is managing its national energy demand to minimize its greenhouse gas emissions. Its housing stock is growing rapidly, and is responsible for 15% of national energy demand. Accordingly, there is a need to understand the performance of the stock by measuring parameters that indicate air quality, thermal comfort, and energy demand.
Submitted by Maria.Kapsalaki on Wed, 01/29/2020 - 12:49
This study aims to evaluate the performances of a VMI, a demand-controlled mechanical supply ventilation system, in an experimental house, in terms of indoor air quality (IAQ), energy performance and thermal comfort. The positive input ventilation draws fresh air from the outside, filters and preheats or precools it before blowing it every dry rooms. The air circulates through doors’ undercuts and is naturally extracted thanks to exhaust orifices in every wet rooms. A heat exchanger supplied with water from a reversible heat pump is used to preheat or precool the blown air.
Submitted by Maria.Kapsalaki on Wed, 01/29/2020 - 12:44
Thermal comfort and sensation are important aspects of the building design and indoor climate control as modern man spends most of the day indoors. Conventional indoor climate design and control approaches are based on static thermal comfort/sensation models that views the building occupants as passive recipients of their thermal environment. Assuming that people have relatively constant range of biological comfort requirements, and that the indoor environmental variables should be controlled to conform to that constant range.
Submitted by Maria.Kapsalaki on Wed, 01/29/2020 - 11:57
The opening of windows can lead to high energy losses in wintertime, especially in nearly zero-energy buildings. But can reduce overheating significantly in summertime. Therefore, window use models have been created in the past to assess the energy use and thermal comfort in residential buildings. The models are mostly based on weather-variables. However, a recent study (Verbruggen, Janssens, et al. 2018) indicated that these models were not able to accurately predict the window use in wintertime. For that reason, an occupancy and activity based model was developed.
Submitted by Maria.Kapsalaki on Wed, 04/17/2019 - 16:08
The research question of this report is “Is it possible to save energy by lowering the bedroom temperatures in winter”. In this paper first the literature on optimum sleeping temperatures is investigated. Then bedroom temperatures and CO2 levels in a cold week in March 2018 are investigated in 16 bedrooms of students of the Master course Technoledge Climate Desing in 2017-2018 of the faculty of Architecture and the Built Environment of the Delft University of Technology. This study shows that it must be possible to save energy by lowering the bedroom temperature in winter.
Submitted by Maria.Kapsalaki on Wed, 04/17/2019 - 12:18
The recent development of affordable and quite accurate temperature sensors and Indoor Air Quality (IAQ) sensors has led to a growing interest in continuous indoor climate monitoring. Not just amongst scientists and engineers but also amongst building owners, developers and e.g. architects interested in boosting our buildings’ health and comfort qualities.