Thermal performance of a local bench heating system for churches

Within the European project - Friendly Heating - a local heating system is designed. The main goal is not to heat the monumental churches themselves, in order to prevent damage to valuable art works and the building itself. The idea is to provide a thermal comfort zone for the people in the pew using radiant heat sources. Measurements in a climate room are used to a) evaluate the local climate created by the bench heating system and b) evaluate the CFD model. The results will be used in ongoing research on the prediction of the indoor climate in a church under real climate conditions.

Thermal performance characteristics of an energy-efficient, healthy house

A collaborative effort between Oak Ridge National Laboratory and Tuskegee University has resulted in an energy-efficient, healthy house that is built on Tuskegees experiment station farm to conduct various energy efficiency and indoor air quality studies. The house is well insulated and possesses other energy-efficient features, such as airtight construction, reflective roofing, and unventilated crawlspace. The energy efficiency and thermal performance of the house are investigated in view of electric power consumption as well as indoor and outdoor temperature and relative humidity data.

Field characterization of the envelope leakage of houses for determining rehabilitation priorities

This paper presents the results of a field study conducted on 8 houses (out of a set of 31) owned and managed by a French social housing public leasing company. The central objective of our investigation was to evaluate and characterize the envelope leakage of these houses in order to propose and prioritize rehabilitation scenarios. For this, envelope leakage measurements were performed together with infrared thermography measurements.

Computer simulation of thermal impact of air infiltration through multilayered exterior walls

Convective air circulation occurring through wall layers is frequently observed in building envelopes. Significant thermal coupling can take place between the incoming cold/warm air and the wall structure, thereby modifying the thermal performances of the envelope. This paper presents an unsteady threedimensional numerical heat and air transfer model, which was developed to

Sustainable building equipment : an excursus through main environmental performance rating systems. Part 1. Resource consumptions & environmental loadings.

Through the analysis of the main international environmental performance rating systems (BREEAM, LEED and GBTool) this work aims to show international design tendencies concerning sustainable building equipment requirements and to provide to designers and researchers a broad view of sustainable building equipment solutions. Hence a particular attention was paid to the assessment approach provided by these systems for each requirement, focussing on comparison of the building performance to a benchmark, compliance with qualitative indications or use of best technologies.

Integration of HVAC systems and double facades in buildings

Nowadays the awareness concerning the environmental pollution and the demand of transparent facades in architecture, lead research in finding new solutions to increase the energy performances of the building and the installations as well. Among those, different kind of Double Skin Facades have been studied and several laboratories are still working on them to find a suitable way to apply this technology in buildings.

Results of HERS BESTEST on an energy simulation computer program.

Describes the application of the HERS BESTEST system to a building energy simulation computer program. There was good agreement between the simulation computer program predictions and those of the reference programs. Different simulation inputs can be the cause of major differences between program predictions. The authors recommended that the HERS BESTEST manual be modified to include detailed information about the house models used to generate the results with the reference software tools.

Evaluating the thermal performance of active envelopes.

In situ measurements were compared with a numerical model to assess the effectiveness of the model for active envelopes as energy efficient building envelope solutions. There was good agreement for the mechanical flow active envelope, but not for the natural flow variant. States that taking into account the enthalpy change of the cavity air is essential for a correct evaluation of the energy efficiency of active envelopes.

A simple design tool for the thermal study of dwellings.

Describes a simple design tool called the 'office building module' (OPTI), which is intended to help building professionals to incorporate the impact of design choices on energy consumption when designing a project. Emphasises the importance of the program's user-friendliness, minimisation of data and speed. Dynamic thermal programs are needed to compute energy needs and estimate overheating. Current programs suffer from slowness and the need for large amounts of data.

A simple design tool for the thermal study of an office building.

Describes a simple design tool called the 'office building module' (OPTI), which is intended to help building professionals to incorporate the impact of design choices on energy consumption when designing a project. Emphasises the importance of the program's user-friendliness, minimisation of data and speed. Dynamic thermal programs are needed to compute energy needs and estimate overheating. Current programs suffer from slowness and the need for large amounts of data.

Pages