Submitted by Maria.Kapsalaki on Wed, 02/12/2020 - 12:37
We present a study of natural ventilation design during the early (conceptual) stage of a building's design, based on a field study in a naturally ventilated office in California where we collected data on occupants' window use, local weather conditions, indoor environmental conditions, and air change rates based on tracer-gas decay. We performed uncertainty and sensitivity analyses to determine which design parameters have most impact on the uncertainty associated with ventilation performance predictions.
Submitted by Maria.Kapsalaki on Mon, 03/21/2016 - 11:36
We conducted observations of wind velocity profiles above a high-density area in Tokyo, Japan, using a Doppler LIDAR system. Obtained data of the exponent index for the power law, which is commonly used to describe the wind velocity profile, displayed diurnal variation, decreasing in the daytime, which is expected in unstable atmospheric conditions. This paper provides information on the uncertainty in the calculated ventilation airflow rate due to the use of a constant value for the exponent index.
Submitted by Maria.Kapsalaki on Mon, 11/16/2015 - 17:49
We conducted observations of wind velocity profiles above a high-density area in Tokyo, Japan, using a Doppler LIDAR system. Obtained data of the exponent index for the power law, which is commonly used to describe the wind velocity profile, displayed diurnal variation, decreasing in the daytime, which is expected in unstable atmospheric conditions. This paper provides information on the uncertainty in the calculated ventilation airflow rate due to the use of a constant value for the exponent index.
Submitted by Maria.Kapsalaki on Wed, 07/02/2014 - 21:22
Central to this study is the significance of making adaptation decisions whose success in achieving resilience to indoor overheating, remain effective both in the short term and long term future. This is in the context of climate change and the varying ranges of uncertain trajectories that may happen during a building’s service life in a developing country (Kenya). The study takes a quantified approach to guiding adaptation decisions by using a methodology that allows appraisal of different design options for an extended timescale (1990 to 2100).
Submitted by Maria.Kapsalaki on Wed, 06/18/2014 - 17:49
Over the last three decades the use of building performance simulation (BPS) tools has increased but its ability to support building design is still limited. State of the art BPS tools have the potential to be used more extensively during the entire design process if their current capabilities are expanded.
Submitted by Maria.Kapsalaki on Wed, 06/18/2014 - 12:22
This paper utilizes a probabilistic mold risk assessment method, introducing a novel mold risk indicator (MRI). The MRI captures the risk of mold occurrence at identified “trouble spots” under uncertainty. It will show how the MRI can enhance decision-making in a mold remediation case.
Submitted by Maria.Kapsalaki on Tue, 11/05/2013 - 18:00
Despite a lot of Integrated Design Process guidelines and procedures have been developed in the last few years, more specific energy design procedures are needed to push the implementation of passive design techniques.
The application of a radon model is useful to understand the processes that drive the radon gasbehaviour from its sources to its accumulation indoors. Since in a given inhabited house the detailedknowledge of the values of all the parameters that affect indoor radon levels is not available, theresponse of the model has to be explored in a reference site in which all the parameters are supposedto be known. We call this site the reference configuration.