A reduction of infiltration and ventilation rates by a mere 1% would reduce annual US energy costs by about 300 million dollars. Infiltration and ventilation activities are an important part of the comprehensive energy conservation research policy of the US Department of Energy. The starting point for this policy is an analysis of how energy is used in buildings, starting with an examination of the buildings themselves. Summarizes US research and future activities.
This paper discusses the situation in the Netherlands with respect to air tightness of dwellings and reflects discussions about this in the Dutch Standard Committee on Air Tightness of Buildings. Results of measurements and calculations are given and the considerations of different groups in thediscussion are included. Finally an attempt is made to produce a model for the prediction of air flow rates, infiltration losses and seasonal gas consumption on the basis of air leakage measurements.
Roof space ventilation is necessary to evacuate water vapour to avoid condensation and to conserve the wooden roof supports. It has been affected by 1. increased insulation, 2. snow screens fitted under the roof, 3. increased humidity due to
Indoor radon concentrations have been measured in a 13 year old two story concrete building of the University of Texas at Dallas. Variations of the radon concentration from the basement to the second floor in offices, classrooms, laboratories, storage rooms, corridors and other locations have been measured. Dependence of the above concentrations on the location and ventilation rates have been studied.
Thirty residences were monitored for nitrogen dioxide, carbon monoxide, formaldehyde, respirable suspended particles, and air exchange rate for forty-one one-week periods using integrating samplers. The residences were located in the northwest a
Investigates the generation of pollutants from unvented convective and radiant kerosene heaters in a residence over a 3 month period. The measured concentrations of carbon monoxide were low. However, under the conditions of use which were studied concentrations of SO2, NO, NO2, and CO2 reached or exceeded levels recommended for indoor air. Further, it was demonstrated that using a semi-open door to provide ventilation did not reduce concentrations of pollutants to acceptable levels.
The Harvard School of Public Health and the Energy and Environmental Policy Centre of the Kennedy School of Government, under the auspices of the Electric Power Research Institute and the Gas Research Institute, conducted a"Workshop on Evalu
Eleven countries are cooperating to establish guidelines for minimum ventilation rates which are sufficiently large to meet the demand for outdoor air in buildings without unnecessarily wasting energy. The most important pollutants have been identified as: carbon dioxide, tobacco smoke, formaldehyde, radon, moisture, body odour, organic vapours and gases, combustion products and particulates. To a certain degree some of thesesubstances can be used as indicators for acceptable air quality to establish minimum ventilation rates.
Reduction of fresh air ventilation is becoming the major means of energy conservation in office buildings. Simultaneously, health and comfort problems experienced by occupants are often suspected to be a direct result of reduced fresh air ventilation. However, there is little data available on health and comfort problems experienced by occupants of buildings operated under normal ventilation rates.
Increased attention to the reduction of energy consumption in buildings and greater awareness of the need to maintain acceptable standards of indoor air quality have led to the development of new or revised standards of building airtightness and ventilation requirements. In this review of the existing standards of twelve countries, an attempt has been made to compare their main features and criteria. In many cases, direct comparison is not possible because of different ways of expressing the significant parameters.