We calculate the influence of thermal mass and night ventilation on the maximum indoor temperature in summer. The results for different locations in the hot humid climate of Israel are presented and analyzed. We find that the maximum obtained indoor temperature depends linearly on the temperature difference between day and night at the site. The fit can be applied as a tool to predict from the temperature swing of the location the maximum indoor temperature decrease due to the thermal mass and night ventilation. Consequently, the fit can be implemented as a simple design tool to present the reduction in indoor temperature due to the amount of the thermal mass and the rate of night ventilation, without using an hourly simulation model. Moreover, this design tool is able to present the designer already in the early design stages the conditions when night ventilation and thermal mass are effective as passive cooling design strategy.
A simple design tool for determining the effectiveness of thermal mass and night ventilation as passive cooling design strategy.
Year:
2000
Bibliographic info:
UK, Oxford, Elsevier, 2000, proceedings of Roomvent 2000, "Air Distribution in Rooms: Ventilation for Health and Sustainable Environment", held 9-12 July 2000, Reading, UK, Volume 2, pp 881-886