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ABSTRACT 
Thermally activated building systems (TABS) are gaining attention as a means of realizing comfort and energy 
efficiency in office spaces. TABS use the building mass for heat dissipation and the storage part of the building to 
save energy, improve comfort, and shift peak energy consumption. However, the thermal response is slow due to 
the large thermal capacity. Therefore, in this study, we propose a method for optimizing the operation of TABS 
by applying Adaptive Model Predictive Control (AMPC) combined with sequential updating of the predictive 
model through online estimation. Furthermore, we verify the feasibility of Demand-Response (DR) 
implementation using the proposed method. From the results, AMPC was shown to reduce the control error 
compared to MPC and to reduce computational load compared to Nonlinear MPC (NLMPC). We also confirmed 
that DR control using AMPC can suppress TABS operation during the hours of 8:00 - 10:00 and 16:00 - 18:00 
when electricity demand is high, while maintaining PMV within ±0.3 and ensuring energy efficiency. 
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1 INTRODUCTION 
In recent years, thermally activated building systems (TABS), which use the structure of a 
building to dissipate or store heat, have been attracting attention as a means for achieving a 
thermal environment that realizes both comfort and energy savings in office spaces. TABS are 
expected to offer a variety of advantages, including high comfort, energy savings, and shifting 
peak energy consumption, by utilizing the high thermal capacity of the building. However, high 
thermal capacity means slow thermal response, making it desirable to introduce dynamic 
control methods. In a previous study1), 2), we proposed a method for optimizing model predictive 
control (MPC) by combining load forecasting with machine learning. The method however 
leaves room for further study, such as shifting peak electricity demand through heat storage and 
improving control performance using nonlinear MPC (NLMPC)3), 4). Because the thermal 
response of TABS is nonlinear, when the nonlinear predictive model is used for NLMPC, high 
controllability can be expected for complex behaviour of the controlled object as well as a 
reference is needed here. However, the nonlinear model has various limitations, including the 
need for a large amount of training data, the time required to model the target system, and the 
difficulty of obtaining a solution within the sampling time for large and computationally 
demanding systems. 
Therefore, we propose adaptive MPC (AMPC)5, 6) as a control method for TABS, specifically 
by combining sequential updating of the predictive model with online estimation. Using this 
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method, the possibility of individual TABS control and DR control with TABS is verified 
through a co-simulation with Dymola and MATLAB/Simulink (Figure 1). In addition, 
comparative verification between AMPC, regular MPC and NLMPC will also be performed. 
 

 
2 ANALYSIS OVERVIEW  
2.1 Overview of control methods 
In this study, MPC-based control is performed on TABS. MPC is a control method that 
sequentially determines the optimal level of operation at the current time while predicting future 
response. However, since it is necessary to predict the future behaviour of the controlled 
variable at each sample time, the prediction model that expresses the dynamic causal 
relationship between the manipulated variable and the controlled variable is required. On the 
other hand, the thermal behaviour of TABS (changes in ceiling surface temperature and room 
temperature) is a nonlinear phenomenon. So, when using MPC to operate TABS, NLMPC with 
the nonlinear prediction model could be implemented. However, when modelling large 
nonlinear systems, the complexity of the optimization problem is a concern due to the 
consideration of model parameters and the huge amount of training data required. In contrast, 
AMPC sequentially updates the parameters of the linear prediction model online by using the 
input/output data at each time. AMPC has some advantages: the modelling is possible even in 
the absence of prior data, the computational load is low, and the system can cope with 
unexpected disturbances. Therefore, in this study, MPC, NLMPC, and AMPC are verified as 
control methods for TABS, with the transfer function (TF)7) model, the nonlinear auto 
regressive exogeneous (NLARX)8), and the recursive ARX (RARX)9) model used as the 
respective prediction models. The TF model represents the relationship between the input data 
and output data of the controlled by object. In this study, The TF model is identified from the 
step response with the TABS operation amount (water-supply flow rate). The TABS operation 

Figure 1: Outline of this study 
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amount is used as the input data and the ceiling surface temperature is used as the output data. 
It is then converted into a state-space representation and used as a dynamical model for MPC. 
The NLARX model is also extension of the linear ARX model to the nonlinear case. The linear 
ARX model is a model that incrementally linearly predicts the variable to be forecast from its 
own historical time series data of other external input variables. The RARX model is the linear 
ARX model that is sequentially updated from the input/output data of the control target. In this 
study, the sequential least squares method is applied as the estimation method. A Kalman Filter 
(KF) is employed as the online model parameter estimation algorithm in this study. 
 
2.2 Analysis model 
Figure 2 shows the model of the analyzed floor. The analysis target is a one-floor model2) of 
TABS created in Dymola10), a modelica-based11) composite physical-modelling tool. In this 
study, the target heating, ventilation, and air conditioning system and the building model were 
constructed using IDEAS12). 
 
2.3 Analysis conditions 
Tables 1 and 2 show the Dymola and MPC analysis conditions. The analysis period was 
assumed to be August and the duration was 1 week each for the initialization period and the 
primary analysis. In the Dymola model, the schedules of occupancy are given according to the 
loading schedule shown in Figure 3. Specifically, the loads of Light and OA (office automation) 
shown in Figure 3 were predicted by the random forest model, while state estimation was 
performed using the KF. The target value of the ceiling surface temperature was analysed by 
Dymola in advance and set to 24.5°C ± 0.3°C, which is considered to be within the comfort 
zone. The required ventilation air volume (480m3/h) is treated by a desiccant outside air 
handling unit and then supplied by a floor outlet ventilation system. 
 

Figure 2: Analysis model (1 floor)

Figure 3: The loading schedule
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2.4 Cases 
Table 3 shows the details of the anayzed cases: in Case 1, comparative verification of control 
performance is performed using MPC, NLMPC, and AMPC; in Case 2, optimal control is 
performed by AMPC and DR-AMPC, with constraints on the ceiling surface temperature 
during weekday occupancy in consideration of the actual operation. In all cases, on/off control 
was used during the initialization period. 
 

 
3 ANALYSIS RESULTS 
3.1 Case1: Control performance verification 
Figure 4 shows the root mean square error of the ceiling surface temperatures and the target for 
each zone in Case 1. In Case 1-1, the error variation is large, while in Case 1-2, the control error 
is smaller. Case 1-3 resulted in a slight increase in control error compared with Case 1-2 but 
had a higher accuracy compared with Case1-1. The computation time for NLMPC and AMPC 
was about 49.3 and 33.1 times longer than MPC, respectively. AMPC reduced the computation 

Tables 3: Analysis case
Case comparison items control method cost function constraint 

Case1-1 
Control 

performance 

MPC 
Minimize 

temperature error
- Case1-2 NLMPC 

Case1-3 AMPC 
Case2-1 

Energy saving 
performance 

AMPC 

Minimize water 
supply flow rate

Office hour: 24.5°C ± 0.3°C

Case2-2 DR-AMPC 

Office hour: 24.5°C ± 0.3°C
Water supply restrictions 
during times of increased 

demand (8:00 - 10:00, 
16:00 - 18:00) 

Tables 1: Analysis conditions of Dymola
Weather data Tokyo, Japan13) 

TABS Water supply, Temperature 5L/min, 16℃ 

Ventilation Flow rate, Supply temperature 30m3/h・person, 23℃ 

Heat generation 
Human 10W/m2 

OA 15W/m2 
Lighting 5W/m2 

Boundary condition under the ceiling and floor 23℃ 

Tables 2: Analysis conditions of MPC
Predictive Model TF, NLARX, RARX 

Algorithm 
Effective Constraint Solver 

(KWIK) 
Sample time 1step = 3,600s 

Prediction horizon 24step 
Heat generation Predicted by RF, KF 

Constraints 

0 [L/min] ݑ  ݑ  5 
െ5 [L/min] ݑ∆  ݑ∆  5 

24.2 [C°] ݕ  ݕ  24.8  
(Weekday Work Hours)
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time by 32.8% compared with NLMPC. Therefore, this study examined DR control considering 
the actual operation with AMPC applied to reduce the computational load. 
 

 
3.2 Case2: Verification of DR methods 
Figures 5 and 6 show the time variations of the ceiling surface temperature and water flow rate, 
respectively, for Case 2. In all cases, the control satisfied the constraint conditions. Figure 6 
also shows that in Case 2-2, the water supply was restricted during high-demand hours (8:00–
10 and 16:00–18:00) in consideration of DR, which resulted in a reduction in water supply 
during certain hours. The right side of Figure 6 shows the percentage of the total weekly water 
supply flow for Case2-1and Case2-2 when Case 1-1 was set as 100%. It shows that the water 
supply flow rate is approximately 95%, which means that the water supply flow rates were 
generally the same before and after implementing DR control. Figure 7 shows the time variation 
of PMV in Case 2. The PMV values of all cases were generally 0.00–0.25, indicating that 
comfort was maintained. From the above results, it was confirmed that employing AMPC for 
one floor of a typical office with TABS installed enables TABS operation considering DR while 
maintaining energy savings and comfort. 
 

Figure 4: RMSE of the ceiling surface temperatures and the target in Case 1 

Figure 5: Change over time of the ceiling surface temperature in Case 2 
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4 CONCLUSIONS 
In this study, comparative verification of MPC, NLMPC, and AMPC for TABS was performed 
to assess control and energy savings, computational load, and DR control. As a result, we 
confirmed that DR control using AMPC enables DR-aware TABS operation while maintaining 
energy savings and comfort. AMPC also reduced the computational load by 32.8% compared 
with NLMPC while reducing the control error by about 66.7%compared with MPC. 
Verification of simulation results by comparison with actual measurement results is a future 
challenge. 
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Figure 6: Change over time of the water flow rate in Case 2 

Figure 7: Change over time of PMV in Case 2 
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