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ABSTRACT  
 
The project aims to investigate the degree of influence that outdoor conditions may have on the indoor environment 
in Norwegian schools. It also aims to ascertain whether it is possible to use outdoor parameters such as particulate 
matter, relative humidity, and air temperature, along with indoor parameters including CO2, relative humidity, and 
air temperature, to predict indoor particulate matter values. The outdoor data was gathered from various weather 
stations near the schools, while the indoor data was provided by N3, who collected it using sensors within the 
schools. To predict indoor particulate matter values, a machine learning algorithm, random forest regression, was 
employed. The project's findings highlight the significant impact of outdoor conditions on indoor environments. 
These encompass a wide spectrum, ranging from local weather effects, like cold temperatures leading to pollutant 
accumulation at lower altitudes, to remote occurrences, such as Sahara sands traveling thousands of kilometres by 
wind to Norway. Variations in the correlation between indoor and outdoor PM10 values across different locations 
and classrooms suggest potential diverse sources of particulate matter, seasonal effects on indoor air quality, or 
disparities in ventilation systems and cleaning procedures. These initial findings were further investigated by a 
random forest regression algorithm in machine learning. This approach incorporated diverse outdoor and indoor 
parameters to assess feature importance and forecast indoor PM10 levels, resulting in robust models with achieved 
R-squared values reaching 0.92. In January, outdoor temperature emerged as the primary influential factor, 
followed closely by outdoor PM2.5 values and indoor relative humidity. In contrast, September emphasized indoor 
relative humidity as the most significant influence. Notably, indoor CO2 demonstrated a consistent level of 
influence in both January and September, likely due to consistent student activity. The robustness of the random 
forest models and their close alignment with actual PM10 values suggest a strong potential for establishing future 
cleaning procedures based on predictive models. 
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1 INTRODUCTION 
 
In recent years, the quality of Indoor Environmental Quality (IEQ) has emerged as a critical 
concern impacting health, well-being, and productivity on a global scale. The World Health 
Organization has highlighted the significance of IEQ, pointing out its direct correlation with 
public health outcomes across various settings (World Health Organization, 2010). Amidst 
this global context, the aspect of Indoor Air Quality in educational institutions, particularly 
elementary schools, demands special attention. Studies, including the 2019 National 

Peer Reviewed Paper



 
 

Monitoring of Working Environment and Health (NOA) conducted by the National Institute 
of Occupational Health, reveal that 35 percent of elementary school teachers in Norway report 
poor IAQ due to inadequate ventilation, underscoring a widespread issue within educational 
settings. 
The urgency to address IAQ is further magnified by the broader challenges posed by 
deteriorating outdoor air quality (Fenger, 2009). Pollution and environmental degradation 
exacerbate indoor air problems, creating a vicious cycle that impacts vulnerable populations, 
such as children in schools, the most. This interconnection between outdoor and indoor air 
quality underscores the necessity for comprehensive solutions that address both facets to 
ensure healthy living and learning environments. 
Following the pandemic, there has been a global call from researchers for an indoor climate 
revolution, emphasizing the need for improved IEQ in schools to safeguard and enhance the 
learning experience (Eichholtz, 2024). The indoor environment plays a pivotal role in the 
health, well-being, and productivity of occupants, making it imperative to understand and 
optimize the factors influencing IAQ. 
This study aims to investigate the feature importance of both indoor and outdoor parameters 
on indoor Particulate Matter (PM) values, uncovering the causes behind their significant 
impact on IAQ. Additionally, it seeks to develop a predictive model for indoor PM values 
using a random forest machine learning model, contributing to the body of knowledge on 
effective IEQ management and offering actionable insights for improving air quality in 
schools. 
 
1.1  Scope and Delimitation 
 
Due to time constraints and the scope of the assignment, certain simplifications had to be 
made. The analysis was restricted to specific months instead of the entire year to save time, 
and the data solely pertains to the year 2023. While this renders the analysis more vulnerable 
to yearly fluctuations, it was deemed sufficiently robust to validate the results. 
Various data discrepancies emerged throughout the project. Instances of missing data arose 
due to sensors being offline, damaged, or due to other unidentified reasons. Consequently, 
this led to less accurate results and some data sets remained uncalculated. 
Notably, not all outdoor sensors were positioned on the school grounds, thereby introducing 
some inaccuracies in the results. The outdoor data slightly differs from the actual outdoor 
conditions on the school grounds. Nevertheless, the sensors were placed close, and the 
selected schools were chosen because of their proximity to the weather stations, aiming to 
mitigate significant impacts on the analysis. 
 
2 METHODOLOGY  
 
2.1 Seasonal Investigation Parameters 

 

Due to the vast amount of data and the limited time and scope of the assignment, specific time 
periods of the year were selected for investigation rather than examining the entire year. 

The objective was to explore time segments from various seasons to compare their respective 
impacts on the indoor environment. Additionally, it was crucial to choose months when the 
school was in full operation. Consequently, the summer months of June, July, and August 
were not feasible due to summer vacation. Similarly, April was affected by the Easter break, 
and May had various national holidays. As a result, the months chosen for further 
investigation were January, representing the winter season, March for spring, and September 
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for fall. Due to unforeseen issues with missing data from March in several schools, the 
machine learning model could not produce reliable predictions for this month. 

2.2 Data Collection 
 
The indoor data for the analysis were sourced from the N3smart sensors installed within the 
selected rooms, while the outdoor data originated from various weather stations located near 
the schools. Specifically, the outdoor PM10 and PM2.5 values were gathered from weather 
stations affiliated with NILU, an independent nonprofit research institution. The temperature 
and relative humidity data were obtained from the Norwegian Climate Service Centre (KSS), 
which serves as a hub for climate and hydrological data, facilitated through a collaboration 
between the Meteorological Institute, the Norwegian Water Resources and Energy 
Directorate, the Mapping Authority, NORCE, and the Bjerknes Centre. 
 
Several different schools in Norway were chosen for the analysis, partly due to their 
proximity to weather stations. The schools are presented in Table 1. 

Table 1: Selected schools and rooms 

School Name Location Construction year Room 1 Room 2 
Stabekk Bærum 2004 Ø203 V201 

Åsveien Trondheim 2015 Base 4 Locker room 

Åsenhagen Lillestrøm 2000 D-150 7D 

Kjeller Lillestrøm 2010 1020 1045 
Høvik Bærum 2013 3139 1007 

 
 
The sensors that collected data inside the schools were provided by N3. These sensors gather 
data concerning CO2, air temperature, relative humidity, and PM10. The frequency at which 
new data is measured can be adjusted, but for this project, it was set to every 2 minutes. These 
sensors are positioned in the middle of the classrooms on the wall opposite the door. 
 
Various weather stations were used to source data for the analysis, and different weather 
stations had to be used for the same school due to the particulate matter values and the 
temperature and relative humidity values not being recorded at the same stations. 
The weather stations used for PM10, PM2.5, relative humidity, and temperature can be seen in 
Table 2. 
 

Table 2: Weather stations used for PM-values, relative humidity, and temperature. Distance from school in 
parentheses. 

School PM Weather station Temp and RH Weather station 

Stabekk Primary School        Bekkestua weather station (700 m) Skriverberget weather station  (2 km) 
Åsveien Primary School       Åsveien skole weather station (50 m) Saupstad weather station (3 km) 
Åsenhagen Primary School Vollaparken øst weather station (2 km) Skedsmo-Hellerud weather station (700 m) 
Høvik Primary School E18 Høvik kirke weather station (500 m) Skriverberget weather station  (2,5 km) 
Kjeller Primary School Vigernes Weather station (3km) Kjeller Weather station (300 m)

 
 
2.3 Machine Learning 
 
Machine learning has become a proven method to be utilized in predicting indoor air quality 
(Wei, 2019). In this study, supervised ML with random forest algorithm was utilized to 
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predict indoor PM10 values based on eight parameters. These parameters were employed to 
train the model and determine which had the greatest impact on indoor PM10 values. 
Recorded indoor PM10 values were used as training data for the model. The input parameters 
are listed in Table 3. Additionally, decision tree and linear regression models were employed, 
but the random forest model consistently yielded more accurate results and were therefore 
used for the results. 

Table 3: Input parameters 

Indoor Values Outdoor Values
Relative humidity Relative humidity 
Temperature Temperature
PM10 PM10 
CO2 PM2.5 

 
3 RESULTS 
 
3.1 Outdoor Parameters 
 
Figure 1 and Figure 2 display the outdoor PM10 values for all schools in January and 
September. The graph is divided into zones in compliance with TEK17s criteria for zoning in 
the planning of activities or construction. September exhibits lower values of PM10 than 
January. However, there is a noticeable increase for all schools between the 6th and 12th of 
September. 
 

 
Figure 1: PM10 values outdoor for all schools, January. 

Peer Reviewed Paper



 
 

 
 

 
Figure 2: PM10 values outdoor for all schools, September. 

Figure 3 and Figure 4 show the outdoor PM2.5 values for all schools. Both graphs follow the 
same trend as the PM10 graphs, albeit slightly smaller, which is natural since the PM10 
values also include the values for PM2.5. The zones set by TEK17 contain information solely 
regarding PM10. However, since PM10 includes smaller particulate matter, it remains 
applicable to the PM2.5 graphs. 
 

 
Figure 3: PM2.5 values outdoor for all schools, January. 
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Figure 4: PM2.5 values outdoor for all schools, September. 

Naturally, September was much warmer than January. Åsveien School exhibits the largest 
difference in temperature from the others, being situated much further north, in Trondheim. 
The relative humidity values from Stabekk and Høvik show unusually stable readings for a 
significant period in January, which might indicate sensor errors. Åsveien has some missing 
values for September. The relative humidity stays between 50 percent and 100 percent for 
both January and September, with Åsveien showing lower values than the other schools in 
January. 
 
3.2 Correlation 
The correlation between indoor and outdoor PM10 values is presented in Table 4. The 
correlation is calculated for the entire day and separately for workdays when ventilation is 
active. Some calculations involve incomplete outdoor or indoor data, leading to skewed 
results. Due to problems with several of the data sets for March, the month of March was 
removed from all the results. 
 

Table 4: Correlation between indoor and outdoor PM10 values 

School  Month Sensor Corr. Corr. Daytime Comment   

Stabekk  January Ø203 0.70 0.75      
 

 
V201 0.71 0.79 

  

 September Ø203 0.31 0.23 

 V201 0.36 0.29 

Åsveien  January Sensor 4 0.35 0.40     

 Sensor 5 0.43 0.40 

 September Sensor 4 0.49 0.44 

 Sensor 5 0.41 0.24 

Åsenhagen  January D-150 0.59 0.52 Missing parts of outdoor data 

 D7 -0.15 -0.13 Missing parts of outdoor data 

 September D-150 0.79 0.78 

 D7 0.75 0.69 

Kjeller  January 1020 0.29 0.42 Missing parts of indoor data 

 1045 0.41 0.25 Missing parts of indoor data 

 September 1020 0.52 0.47 

 1045 0.55 0.46 

Høvik  January 3139 0.52 0.50     

 1007 0.79 0.66 
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 September 3139 0.43 0.44 

  

     1007 0.59 0.48     

 
3.3 Predictive Patterns 
 
Predictive patterns for the indoor PM10 values and what parameter that had the most 
significant impact were generated using a random forest model (regression). The Coefficient 
of variation (CV) and R2 values for the models can be seen in Table 5Table 5. Most of the 
models were strong or very strong, capturing a substantial amount of the variability. The 
model only uses data from when the ventilation was going during the day. 
 

Table 5: CV and R2 values for the predictive model 

 January September 
School/Room R2 CV R2 CV 
Stabekk Ø203 0.803 0.803 0.813 0.814
Stabekk V201 0.812 0.813 0.743 0.743 
Åsveien base 4 0.802 0.802 0.730 0.730 
Åsveien locker room 0.839 0.845 0.665 0.669
Åsenhagen D-150 X X 0.890 0.890 
Åsenhagen 7D X X 0.887 0.888 
Kjeller 1020 X X 0.796 0.800 
Kjeller 1045 X X 0.789 0.789 
Høvik 3139 0.783 0.786 0.634 0.634 
Høvik 1007 0.801 0.803 0.922 0.923 

 
Figure 5 shows which feature had the largest impact on the indoor PM10 values for January 
2023. The number of schools is reduced due to missing data from Åsenhagen and Kjeller. The 
most influential feature in January was the outdoor temperature, closely followed by outdoor 
PM2.5 values and indoor relative humidity. 

 
Figure 5: Feature importance, January 

Figure 6 displays which feature had the most impact in each room, aiding in the distinction 
between room-specific differences.  
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Figure 6: Feature importance for each room, January 

 
Figure 7 shows which feature had the largest impact on the PM10 values for September 2023. 
It can be observed that indoor relative humidity had the most significant overall impact, albeit 
with some variations across different rooms. 
 

 
Figure 7: Feature importance, September 

Figure 8 displays which feature had the most impact in each room, facilitating a clearer 
comparison between the rooms. 
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Figure 8: Feature importance for each room, September 

4 DISCUSSION 
 
4.1 Outdoor Parameters 
 
The outdoor data for PM10and PM2.5 indicates that Stabekk and Høvik primary schools have 
the highest values of PM overall. Both schools are situated near the European route E18, the 
main road leading into the capital, Oslo. It is reasonable to assume that the elevated values are 
due to road dust. The PM values are also generally higher for January than for September. 
This results from the concentration of outdoor pollutants in the lower atmosphere due to 
temperature inversions. Typically occurring in cold weather, the ascent of warm air to the 
upper atmosphere creates a layer that confines colder air below it. Consequently, pollutants 
accumulate at lower altitudes. 
 
All schools experienced a distinct increase in particulate matter between the 6th and 12th of 
September. This increase was caused by a storm in the Sahara Desert. The dust was carried by 
the wind all the way from the Sahara Desert to Bærum, Lillestrøm, and even Trondheim, 
resulting in elevated dust levels for all the schools. 
The outdoor temperature and relative humidity for Stabekk, Høvik, Åsenhagen, and Kjeller 
were quite similar for both January and September. All four schools are situated close to each 
other, with Høvik and Åsenhagen being the farthest apart at 35 km. Therefore, it is expected 
for them to have similar air temperatures and relative humidity. Åsveien, located in 
Trondheim, showed the largest difference from the others, especially regarding relative 
humidity, which was significantly lower in January. 
 
4.2 Correlation 
 
The outdoor and indoor PM10 values exhibit varying degrees of correlation, as displayed in 
Table 4. The lowest correlation, 0.23, was observed for Stabekk in September, while the 
highest, 0.79, was noted for Stabekk in January. 
In September, Stabekk and Høvik have a lower correlation compared to January, whereas 
Åsenhagen and Kjeller exhibit a higher correlation in September than in January. Åsveien 
demonstrates the highest correlation in September for one room and in January for the other 
room. 
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These correlations suggest a notable discrepancy in the relationship between outdoor and 
indoor PM10 concentrations. To further investigate the matter regarding outdoor factors a 
predictive machine learning model was utilized. 
 
4.3 Predictive Patterns 
 
The analysis utilized a random forest regression algorithm in the machine learning model. 
Most models generated by this algorithm demonstrated strength, capturing a substantial 
amount of variability. The model exclusively utilized data collected during operational 
ventilation hours. The corresponding CV and R2 values for the model are presented in Table 
5. Among these models, those for Åsenhagen and Høvik exhibited the highest strength, 
boasting R2 values as high as 0.89 and 0.92, respectively. 
 
In January, the most influential feature was outdoor temperature, closely followed by outdoor 
PM2.5 values and indoor relative humidity. Indoor temperature also exhibited significance, 
while indoor CO2 values, outdoor PM10, and relative humidity values played minor roles. 
In September, the most influential feature was indoor relative humidity. Indoor CO2 exhibited 
a slightly larger level of influence compared to January. PM2.5played a minor role, while 
indoor temperature, outdoor temperature, PM10, and relative humidity had minimal 
importance. 
 
The CO2 values exhibit a similar level of influence on indoor PM10 values for both January 
and September, slightly higher in September. This influence is likely due to consistent student 
activity, which remains constant regardless of the seasons. 
For January, the outdoor temperature had the biggest impact on the indoor PM10 values 
followed by the PM2.5 values. These two parameters can be related. The low temperatures 
make the pollutants accumulate at lower altitudes. When there is a higher concentration of 
PM2.5 they will naturally have a higher impact on the indoor values. 
The indoor relative humidity had a considerable importance for both January and September. 
There can be several reasons for this. In lower humidity the static electricity in the dust 
particles can increase, causing dust particles to repel each other and remain airborne longer. 
At the same time, higher humidity can reduce static charges, encouraging particles to clump 
and settle faster. 
Higher humidity can also cause the dust particles to absorb moisture and clump together, 
making them heavier and settle on the floor or other surfaces. 
 
5 CONCLUSIONS 
 
The project aimed to determine the degree of influence that outdoor conditions have on the 
indoor environment in Norwegian schools. Additionally, it sought to ascertain whether using 
outdoor parameters would enable the prediction of indoor particulate matter values. 
From the project findings, it is evident that the indoor environment is significantly impacted by 
outdoor conditions. These conditions vary widely, spanning local weather phenomena like cold 
temperatures that cause pollutants to accumulate at lower altitudes, to distant events such as 
Sahara sands being carried thousands of kilometres by the wind to Norway. 
 
The correlation between indoor and outdoor PM10 values varies significantly across locations 
and classrooms. This variation may indicate diverse sources of particulate matter, seasonal 
influences on indoor air quality, or differences in ventilation systems and cleaning procedures. 
To delve deeper, machine learning was employed using a random forest regression algorithm. 
This algorithm utilized various outdoor and indoor parameters to determine feature importance 
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and predict indoor PM10 levels. The models demonstrated strength, with some achieving R2 

values as high as 0.92. 
 
In January, outdoor temperature emerged as the most influential feature, closely followed by 
outdoor PM2.5 values and indoor relative humidity. Conversely, in September, indoor relative 
humidity held the most influence. Indoor CO2 levels had influence in both January and 
September, likely attributed to consistent student activity. 
 
Given the robustness of the random forest models and the close alignment between the 
predictive models and the actual PM10 values, there exists a high potential for future cleaning 
procedures to be founded upon predictive models. Embracing modern technology in cleaning 
processes could reduce redundant work and significantly enhance the indoor environment. 
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