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ABSTRACT 
 
Achieving better energy efficiency requires dwellings to face a delicate equilibrium, balancing thermal comfort 
and indoor air quality. This longitudinal study uses crowdsourced data collected over a year from 15 residences in 
Santiago, Chile, to examine the intricate relationship between these two parameters and the houses' typology. 
Results highlight considerable variability in PM2.5 and PM10 concentrations and thermal comfort across the sample. 
PM concentrations are below the worldwide representative value, but the maximum values are above the 
representative maximum. Chronic harm from exposure to these concentrations is 1271 and 683 (DALYs/105 
person/year) for PM2.5 and PM10. Moreover, the annual WHO 2021 recommendations are not met during the 
measured time, and the daily mean is met by 25% and 72% of the measured days for PM2.5 and PM10, respectively. 
Determinants of these variations may include geographical location and construction materials, which will be 
included in future research. The indoor environment does not provide the hygrothermal conditions to achieve 
acceptable thermal comfort, which is only reached during 56% of the measured time.   
This research advocates for a comprehensive regulatory approach, ensuring that interventions are needed to 
optimize energy efficiency and prioritize occupant well-being. Insights from this study contribute to a better 
understanding of competing objectives in residential architecture, offering informed perspectives for strategic 
decision-making and impactful interventions. 
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1 INTRODUCTION 
 

Residential buildings play a crucial role in shaping human health and well-being by serving as 
the primary environments where individuals spend a significant proportion of their time. 
Comfortable and healthy homes contribute to physical health by providing optimal conditions 
that reduce the risk of respiratory illnesses and support mental well-being by creating spaces of 
shelter and relaxation, fostering emotional stability, and reducing stress. However, indoor 
environments and housing conditions vary from house to house due to a complex interplay of 
factors, such as household lifestyle, preferences and behavior, and socio-demographic and 
economic inequalities, all of which influence human health and well-being within residential 
settings. Furthermore, environmental factors such as climate, ambient pollution, and extreme 
weather events demand a more resilient housing design to mitigate these risks and safeguard 
occupants' safety and comfort.  
Worldwide, diverse geographical, cultural, and socio-economic factors contribute to a wide 
range of housing conditions and lifestyles. From urban cities to rural villages along the country, 
housing types vary significantly, ranging from modern high-rise apartments to traditional 
single-family dwellings and informal settlements. Over the last two decades, Chile has begun 
to improve the efficiency and sustainability of its housing stock. The increasing demand for 
energy-efficient buildings has led to tighter envelopes with a corresponding reduction in 
ventilation and air infiltration. An unintended consequence of the drive for heating and cooling 
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demand reduction is a reduction in IAQ (Shrubsole et al., 2014; Molina et al., 2021). Therefore, 
if the Chilean housing stock aims to develop sustainably, it must simultaneously consider 
energy and IAQ targets, and the impacts of energy-demand reduction interventions on IAQ 
must be understood. Accordingly, it must promote occupant health and become people-
centered. 
This paper reports the beginning of a study that investigates particle concentrations and 
hygrothermal conditions in a sample of Santiago houses to inform public health interventions, 
urban planning, and sustainability in Chile. The study is currently measuring indoor 
environmental parameters in a sample of houses in Santiago. Section 2 describes the study and 
the methods of analysis carried out for this paper, and Section 3 shows and discusses the results. 
 
2 METHODS  
 
The research study measures IEQ parameters in a sample of 32 houses in Santiago using 
PurpleAir sensors, including relative humidity, air temperature, and particulate matter 
concentrations (PM2.5 and PM10). Measurements are made every two minutes and recorded in 
the cloud. Sensors were installed in the living room or kitchen, away from direct solar radiation 
or sources of contamination, as these locations are where the concentration of the more harmful 
pollutants are expected to be. Data was collected over a year to represent the four seasons and 
then extracted from the platform at a ten-minute resolution (averaged). However, not all sensors 
recorded sufficient data to run the analyses, so a cleaning process was carried out, and only 
those sensors with adequate data (15) were retained for the study. The sample includes both 
houses and flats, all of which utilize natural ventilation exclusively. The climate in Santiago 
can be described as Csb, meaning Temperate/DrySummer/Warm summer/ Rain in winter, 
according to the Köppen classification (Peel et al., 2007).  

2.1 Data gathering 
Web scraping techniques from publicly available sources included wildfires and treated them 
as events. These sources of information included CONAF, the  Chilean National Forestry 
Corporation, and social media platforms. Monitored data was extracted using an automated 
code in Python and the "BeautifulSoup4" and "Requests" libraries, known for being effective 
at conducting clean Web-Scraping processes. Fifteen out of the 32 dwellings with complete 
data over a year were selected for this analysis to ensure coverage across different seasons. 
Parameters included the relative humidity, air temperature, atmospheric pressure, and particle 
concentrations. 

2.2 Data processing and data analyses 
Indoor thermal comfort and air quality analyses were carried out on two levels: i) inferential 
and descriptive statistics (Casella et al., 2001) and ii) for thermal comfort, a hygrothermal 
analysis based on a psychrometric chart with standardized comfort zones and, for IAQ, the PM 
concentration exceeding the WHO recommendations for 24h mean averages (WHO, n.d.), and 
health impacts using Harm Intensities according to Morantes et al., (2023). Morantes et al. 
developed an expression for quantifying chronic harm in DALYs based on harm intensities and 
contaminant concentrations. They combined toxicological and epidemiological data to 
calculate median harm intensities and uncertainties for the most common and reported indoor 
air contaminants. 
A second analysis was carried out using the "k-means clustering" algorithm. This technique 
organizes the data into groups based on similarities. We used the "scikit-learn" library (Kramer 
et al., 2016), which provides machine learning tools for data processing to create user-type 
profiles by identifying patterns in thermal comfort time-series data. This clustering considers 
the median relative humidity and air temperature in homes to provide a representative value for 
categorizing them. 
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After determining that the cleaned temperature data followed a normal distribution— 
minimizing errors and outliers— we used the elbow method to determine the number of clusters 
or subgroups (Shi et al., 2021).  

2.3 Data Visualization 
A psychrometric chart visually represented thermal comfort, indicating whether the temperature 
and relative humidity fell within the acceptable comfort zones for the summer and winter 
seasons. A provisional dataset was also created with the dates of major extreme events (such as 
fires). This was generated using CONAF Chile data until July 2023 and the social network X 
(formerly known as Twitter) with data after July 2023. This information was used to find 
patterns in PM concentrations and increases in temperature in homes when these extreme events 
occurred. 
 

3 RESULTS AND DISCUSSION 
 

3.1 Data visualization 
Data visualization and analysis tools are hosted online (GitHub repository link: 
https://eccuc.github.io), providing ongoing updates and interactive visualizations of the study's 
findings. Figure 1 shows the location of the 15 sensors in Santiago de Chile. 
 

 
Figure 1: Location of the 15 sensors in the Metropolitan region. In the graph, only 13 sensors appear because 

two of them are very close to each other and thus appear overlapped.  
 

3.2 Particle concentrations and harm 
Table 1 shows the annual descriptive statistics of PM2.5 and PM10 concentrations with annual 
medians of 21.19 and 22.76 µg/m3, respectively. Harm Intensities for PM2.5 and PM10 are 30 
and 60 DALY/µg/m3/105 person/year, giving 1271 and 683 DALYs/105 person/year, 
respectively, and a total harm of 1954 DALYs/105 person/year. 
 

Table 1: Descriptive statistics and harm of particle concentrations (annual data). The worldwide statistics are in 
brackets. Arrows indicate whether the sample is below or above the world representative statistics from 

Morantes et al.. 

Statistic  PM2.5 (µg/m3)  PM10 (µg/m3) 
Max ↑ 1688 (430) ↑ 2082 (350) 
P97.5 - 91.40 - 96.47  
Median ↓ 21.19 (26) ↓ 22.76 (62) 
Mean ↓ 28.52 (52) ↓ 32.31 (82) 
P2.5 ↓ 3.85 (0.022†) ↓ 4.35 (17†) 
SD ↓ 29.92 (67) ↓ 33.69 (76) 
Harm (DALYs/105 person/year) ↓ 1271.22 (1560) ↓ 682.71 (1860) 

† : Minimum concentration reported by Morantes et al., 2024. 
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The PM2.5 and PM10 annual mean in 2023 were 28.52 and 32.31 µg/m3, surpassing the WHO 
guidelines of 5 µg/m3 and 15 µg/m3. The 99th percentile of the daily 24-hour means were 94.10 
and 102.11 µg/m3 for PM2.5 and PM10, respectively, above the recommended 15 and 45 µg/m3. 
 

 
 

 
 

Figure 2: Cumulative density functions for PM concentrations during 2023 (above) and the daily means (below). 
Notice that the WHO 24-hour mean averages are met by 25% and 72% of the measured days for PM2.5 and 

PM10, respectively. 

3.3 Hygrothermal performance 
A psychrometric chart with winter and summer comfort zones visually represented each house's 
thermal comfort; see Figure 3. Data indicate that households fell within acceptable comfort 
zones during 56% of the measured time. The indoor air temperatures ranged between 9.4 and 
41°C, with a median of 26°C, whereas the relative humidity ranged between 9% and 73%, with 
a median of 34%. The charts are available for each house in both HTML web and Python 
versions. The charts display a heat map, where lighter to yellow areas indicate higher 
concentrations of absolute humidity and indoor temperature tuples. 
 

 
Figure 3: Psychrometric chart for one sensor, showing the data within the thermal comfort zone—red area for 

summer and blue and red area for winter. Gradients of yellow indicate data saturation.  

For charts of other houses, visit the GitHub repository at https://eccuc.github.io. 
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According to the heat map shown in Figure 3, most dwellings tend to concentrate their 
hygrothermal conditions within the thermal comfort zone. These graphs can be viewed at 
https://eccuc.github.io/fondecyt/higrometric/hygrometric.html. 
A rigorous future analysis might require incorporating construction materials (such as 
insulation materials and thermo panel windows) and conditioning elements (such as air 
conditioning and heating) into the equation, as they would allow for the development of a meta-
statistical profile of thermal comfort in Chilean dwellings, creating more reliable profiles for 
developing public policies on hygrothermal conditioning. 

3.4 Hygrothermal conditions during extreme or seasonal events 
Overall, no statistical patterns regarding wildfires and hygrothermal conditions were found. 
This conclusion was reached through graphical visualization of the time-series data of 
temperature and relative humidity within the houses over the measured time while overlapping 
the extreme events and their dates. This first examination did not show a pattern worth exploring 
any deeper in Santiago, and the most visible pattern over time is the temperature and humidity 
variations, following a periodic function with high temperatures and low humidity in summer 
and the opposite in winter. 

3.5 Comparative analysis and data clustering 
The variation in indoor air quality and thermal comfort was influenced by factors such as the 
geographical location and the construction materials of the residences. The k-means clustering 
identifies distinct thermal comfort profiles, suggesting a need for tailored approaches in 
architectural design to enhance energy efficiency and thermal comfort. This is a subject of 
further investigation. Two primary clusters of dwellings were identified in the Jupyter Notebook 
based on the median relative humidity and temperature, with indoor relative humidity below 
and above 38% (Group 0 and Group 1, respectively), which showed different profiles of thermal 
comfort among the dwellings; see Figure 4a. A second iteration was applied using the elbow 
method to further sub-categorize the homes; see Figures 4a and 4b. Notice that two profiles, in 
red in Figure 4.a and green in 4.b, are overlapped. 

 
Figure 4.a: Sample clustering, groups 0 and 1.  

 

 
 Figure 4.b: Clustering of Group 0, 

giving three user profiles. 

 
Figure 4.b: Clustering of Group 1, 

giving three user profiles. 
In both cases, three subgroups were created within the same quadrants. However, this 
subclassification is temporal because, given the restricted number of homes and the lack of 
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information about the presence of elements that might improve thermal comfort, such as HVAC 
equipment, it is impossible to state that these profiles represent the diverse Chilean realities. 
  
4 OTHER LIMITATIONS 
Limitations of this study include the lack of verification for potential 'deviation' in the two 
sensors' response once they were deployed, as well as the absence of individual uncertainty 
analyses and consideration of seasonal variations. 
 
5 CONCLUSIONS 
Data processing involved statistical and machine learning tools, both numerical and visual, 
including Python, R HTML, CSS, AND JavaScript. This study found great variability in PM2.5 
and PM10 concentrations in the sampled houses, with average yearly levels of 21.19 µg/m3 for 
PM2.5 and 22.76 µg/m3 for PM10. These concentrations are linked to health risks, contributing 
to harm quantified as 1271 DALYs/105 person/year for PM2.5 and 683 DALYs/105 person/year 
for PM10. The analysis has also found that homes only achieved acceptable thermal comfort 
levels 56% of the measured time. Future research will focus on the variability within each house 
and its relation with the house and household characteristics. 
These findings emphasize the need for an integrated approach in residential building design, 
incorporating both architectural and technological solutions to achieve optimal thermal comfort 
and air quality. The study advocates for robust regulatory frameworks to ensure these aspects 
are prioritized in future housing policies. Further research is recommended to include more 
diverse environmental conditions and housing typologies to generalize the findings more 
broadly across different climates and construction styles. Additionally, incorporating more 
advanced metrics for air quality and thermal comfort could refine the understanding of these 
interactions. 
For further details on quantifying the harm provided by exposure limit values (ELV) and their 
implications for public health, refer to the paper of this conference titled "The Protection from 
Harm to Populations of People Provided by Exposure Limit Values" by Jones et al.. 
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