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ABSTRACT 
 
By 2050, Europe aims for energy-neutral buildings, necessitating effective integration of renewable energy sources 
and smart grid management. To address peak energy demands and prevent grid congestion, building-level energy 
management is crucial. This paper presents a stepwise calibration methodology for hybrid building models, 
enhancing flexibility in HVAC systems and thermal buffers.                   
The methodology involves: (1) utilizing known building and installation data to reduce calibration parameters, (2) 
independently calibrating subsystems like floor heating and cooling, (3) selecting optimal time periods for 
parameter estimation based on different physical mechanisms, and (4) validating the model with actual 
measurements.                        
The SirinE hybrid model combines physical and data-driven components, leveraging known building data to 
minimize the need for detailed measurements. Successfully applied in various projects, SirinE improves PV energy 
self-utilization and electrical energy demand.                                  
Future work will focus on automating calibration, enhancing model robustness against user behaviour and sensor  
failures, and refining the hybrid model for evaluating residential renovations in an open source version. This  
methodology supports efficient energy management and integration of renewable sources in the built environment. 
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1 INTRODUCTION 
 
By 2050, the entire built environment in Europe must be energy-neutral. A major challenge in 
this energy transition is integrating energy-producing neighbourhoods into the existing energy 
infrastructure. The exponential increase in photovoltaic (PV) systems, electric vehicle 
charging, batteries, electric cooking, and heat pumps will lead to higher peaks in electricity 
demand and supply (Bunn 2016). The intermittent availability of various renewable energy 
sources, along with associated trade platforms, will require energy systems to switch between 
energy sources smoothly and on short notice. 
The maximum demand and supply are limited by the capacity of the grid connection, which 
can be a fixed value or time-limited by the district service operator (DSO). Energy systems 
must be capable of smartly balancing supply and demand at the district level to avoid network 
congestion. To ensure stability and security of supply, the energy network will need to 
incorporate a mix of different commodities (electricity, heat, and possibly hydrogen 
networks). 
Building-level energy management (in houses, offices, hotels, etc.) can play an important role 
in reducing peak demands by distributing energy demand over time and across different 
commodities. Control based on building models can assist in load balancing by accurately 
predicting how much energy can be shifted in time for ventilation, heating, cooling, and 
domestic hot water at specific moments. Currently, other commodities like batteries, PV, and 



EV charging are often used to enable flexibility due to the time required to calibrate these 
models. 
 
For the market uptake of HVAC flexibility, it is important to have a model that can be 
initiated very rapidly. The challenge is to develop a building model controller that includes an 
automated calibration procedure that can be initiated by an installer within a few hours. To 
balance energy production within the capacity constraints of the local grid, reliable 
predictions of both decentralized renewable energy production and building energy use are 
needed. Choosing the right control scenario requires short-term predictions based on different 
scenarios, ideally providing a one-day-ahead forecast of both energy demand and 
decentralized renewable energy production. 
Occupant behavior significantly influences a building's energy demand, making it essential to 
predict the impact of behavior on energy use. Involving occupants in the process may lead to 
behavioral changes, requiring the prediction model to continuously adapt. 
Current research in this field follows two main directions. The first focuses on smart district-
level control using Artificial Neural Networks, agent technology, or Model Predictive Control 
(Canizares 2014) (Mynhoff, 2018) (Mocanu 2018). These models often represent individual 
building energy requirements simplistically and statistically, using fixed demand/supply curves. 
The second research direction involves single-building scheduling and control studies using 
physical models simulated in specific tools, such as TRNSYS or Energy-Plus (Ascione 2016) 
(Schirrer 2016) , or RC networks (Deconinck, 2017). 
Recent academic focus has shifted from black-box models to hybrid models, which offer 
better predictions and higher robustness (Bourdeau 2019). Hybrid models use known physical 
relations, such as the cooling down of a building, and therefore require less informative data 
than black-box approaches. Unknown aspects, like user behaviour, are modelled using black-
box techniques or profiles. The current generation of hybrid building models primarily 
focuses on a single type of building and often uses fixed user profiles for heating demand. 
Both research directions require calibration time, but this paper focuses on the calibration 
method of hybrid building models. TNO has developed and successfully tested this hybrid 
model for model predictive control (Borsboom, 2022) and is currently working on an open-
source version for the Dutch government to evaluate building renovation measures. The 
described stepwise calibration methodology can be applied to both these models and other 
physical based models 
 
 
2  METHODOLOGY TO QUANTIFY FLEXIBILITY ON A BUILDING LEVEL  
 
At the district level, there is a need to balance the supply and demand of energy as well as to 
manage congestion to stay within the grid's maximum capacities. The District Service Operator 
(DSO), responsible for the proper functioning of the grid, will manage buildings to control 
congestion and therefore available consumption or delivery capacity. Energy markets provide 
price incentives at various timescales for the prices of energy for both supply and demand 
within a given time horizon. These controls will translate into signals for a controller located 
behind the energy meter, at the building or building campus level. This controller can manage 
one or more active components in such a way that the demand or supply of energy changes over 
time. For this, it is important that the controller receives an accurate prediction of the available 
flexibility. For example, it is important to know how much cooling demand is predicted and 
how much this can be increased or decreased at a certain point in the time horizon used by the 
DSO or Energy Market. 
The first step is to identify which components can be actively controlled. Key components for 
managing the electricity grid include the HVAC system, PV panels, EV charging stations, local 



heat buffers, and batteries. Additionally, smart appliances, such as household appliances, offer 
further control possibilities. This paper focuses specifically on shifting heating demand within 
the building model. 
 
The second step involves predicting the flexibility potential of these active components, 
described through active demand response (ADR) events (EIA Annex 6, 2019). An ADR event 
specifies how a component's flexibility can be adjusted, such as changing a temperature setpoint 
by a fixed amount within a set time frame. Shifting energy use at specific times impacts 
consumption either upward or downward and can lead to a rebound effect later. The building 
model calculates these shifts and rebound effects based on control signals and other input 
parameters, such as outside temperature and occupant behaviour. Currently, various standards 
have been developed to describe ADR events, including PAS 1878/1879, EEBUS, and S2 of 
EN 50491-12-2. 
The third step is to select the most effective control strategy based on ADR predictions. ADR 
describes how a component responds to fixed control strategies. In Model Predictive Control, 
multiple control strategies can be simulated within a single time step using the building model. 
These ADR scenarios are evaluated using a cost function derived from price signals from the 
Distribution System Operator (DSO) or the energy market, leading to the selection of the 
optimal control signal for the active component. 
Currently, various standards have been developed to describe ADR events, including PAS 
1878/1879, EEBUS, and S2 of EN 50491-12-2. 
 
 
3  HYBRID BUILDING MODEL SIRINE  
 
An important issue in determining the ADR of a building to changes in the active control 
inputs is that the ADR is dependent on dynamically varying external conditions, such as 
ambient temperature, solar radiation, wind, the current thermal energy stored in the building 
structure, user behaviour and constraints in the operation of the HVAC installation. This 
makes the ADR a complex  multi-variable function that is hard to determine, requiring 
informative data over the whole operational range. 
 
To avoid the need for large and high-information content datasets of historical data of 
buildings in a district, a hybrid modelling approach is taken.  The basic idea is that limiting 
the number of unknown parameters, that must be estimated from the data, will reduce 
parameter identifiability problems. 
 
SirinE is a hybrid predictive digital twin model for buildings (Borsboom, 2022). It comprises 
a physical building model that solves heat flow balance equations and a data-driven occupant 
model that simulates occupant interactions with building components (e.g., thermostats, 
windows, electric appliances), incorporating these actions into the heat flow balance 
equations. 
 
The main idea behind SirinE is to leverage available building data and known physical 
relationships to minimize the need for high quality data. There is usually plenty of time-series 
data available from energy meters, temperature sensors, and smart building systems (e.g., heat 
pumps, building and control systems (BACS), smart home systems, smart thermostats, 
electric vehicle systems). However, this data is often not detailed enough to calibrate a model 
for reliable energy predictions. By using known building and installation data, SirinE reduces 
the requirement for highly detailed data. An additional advantage is that the relations between 



measured variables are governed by physical laws and that parameters have physical 
interpretation and allowable ranges. 
 
The building model of SirinE includes a heat balance and ventilation network (Kornaat 2020) 
that is automatically derived from the Building Information Model (BIM), which describes 
the geometric configuration and construction properties of the building (including all spaces, 
walls, windows, doors, roofs, etc.), and the Building Energy Model (BEM), which describes 
the building's heating, cooling, and ventilation equipment and controllers. With the automatic 
generation of the heat network, the simulation model can be easily adapted to different 
building types, such as apartment buildings, row houses, and office buildings. Furthermore, 
the data used to calibrate the model utilizes standardized ontologies like Haystack, making the 
simulation model easily scalable for different building typologies.  
 
This heat network needs calibration for two reasons: firstly, not all necessary information is 
always available, such as the masses of the floors and walls. Secondly, the provided 
information may not be accurate, such as thermal bridges or airtightness being less than 
specified due to construction quality. This paper describes a strategy to calibrate the heat and 
ventilation networks. 
SirinE includes a generic occupant module (framework) that reproduces the interactions of 
occupants with the building. The occupant module contains distinct submodules, each 
associated with specific occupant behaviour, such as occupancy, window interactions, or 
thermostat setpoint adjustments. The implementation is flexible, allowing each submodule to 
connect to various predictive models, ranging from simplistic approaches (e.g., fixed hourly 
profiles) to complex AI algorithms. Receiving the building's state at each timestep from the 
building simulator, along with weather information, the occupant module predicts occupant 
behaviour for the next timestep and sends it back to the building simulator. The AI-based 
occupant module, combined with the physics-based building simulator, makes SirinE a hybrid 
digital twin. 
 
The building heat balance model dynamically interacts with the occupant model, implemented 
in an agent-based framework. All individual users (or groups of users defined as a user role) 
are agents that interact with the heat balance model in a dynamic simulation over the 
prediction horizon. The occupant models that have been implemented (simple hourly 
schedules, models for thermostat and appliances based on sliding averages, Markov chain 
models for window-opening behaviour) highlight the hybrid nature of SirinE. However, it is 
important to note that this is a general framework that can be coupled with any occupant 
model. We have developed different strategies to calibrate user behaviour, and this paper 
focuses on the calibration of the ventilation and heat networks. 
 
 
4  CALIBRATION STRATEGY  
 
 
4.1 Introduction of the calibration strategy 
 
 
The calibration strategy developed can be described in a number of steps, ranging from zero 
up to 4. 
 



Table 1: Calibration steps 

 
Step Description of the calibration step 
0 Collect information from the building BIM and 

HVAC installation data sheets. Eliminate from 
estimation all parameters that are known with 
sufficient confidence  

1 Identify subsystems which can be calibrated 
independently  

2 Identify special time periods in which part of the 
parameters can be discarded, limiting the number of 
parameters to be identified.  

3 Perform overall parameter estimation 
4 Perform validation over a time series not used in 

parameter estimation 

  
 
The idea behind this methodology is to start in step 0 with as many known properties of the 
building and installation, and known physical relationships, using the heat and ventilation 
network. This approach addresses the issue that time series data available for calibration is 
often insufficiently informative, leading to large parameter uncertainty and inaccurate model 
predictions.  
In step 1, we identify subsystems with parameters that can be calibrated independently, such 
as a floor heating system. In step 2, We identify special time periods in which part of the 
parameters can be discarded. Limiting the number of parameters to be identified. We also 
utilize the fact that different physical transfer mechanisms have different dynamics. For 
example, ventilation can heat a space faster than solar radiation and heat conduction. By 
choosing time periods where the effect of a transfer mechanism is large compared to others 
the parameters involved can be estimated neglecting correlation with other parameters. For 
instance, ventilation can be calibrated when there is a large difference between indoor and 
outdoor temperatures, while solar radiation can be calibrated best during the transitional 
seasons.  
The complete set of parameters will be estimated in step 3 using the already determined 
parameters in steps 0,1 and 2 as initial estimates and uncertainty ranges.  
Step 4 involves validating the simulation against actual measurements.  
 
The different steps are detailed in the section below. To illustrate the calibration steps, data 
and estimation results for a 4-room apartment in an apartment building, with data recorded 
over a 1-2 year period, will be shown. The well-insulated apartment has a ground source 
water-to-water heat pump for domestic hot water and floor heating and is equipped with 
individual PV panels. 
 
 
4.2 Step 0 BIM/HVAC information collection  
 
To reduce the number of parameters that need calibration, we incorporate as much known 
building information as possible into the physics-based ventilation and heat network. By 
utilizing known physical relationships, such as heat conduction and radiative heat transfer, 
less informative data is required for calibration. This process begins with collecting Building 
Information Modeling (BIM) data and HVAC installation data sheets. 
For the SirenE model, the required building geometry information includes details on the 
façade, roof, floor, windows, doors, inner construction areas, and orientation, as well as the 



material properties of each layer of these elements. The BIM information is then used to 
automatically configure a 50 nodes RC-network of the building. 

 

Figure 1: Apartment geometry derived from the BIM 

 

Information on the heat pump, floor heating, floor cooling, boiler dimensions, and PV 
installation is retrieved from manufacturer data sheets or EPBD calculation inputs. User 
behaviour must be calibrated, which can be done through questionnaires or derived from real 
data if available, including room temperature setpoints, CO2 levels, and electricity 
consumption. Alternatively, standardized user profiles can be used. 
 
 
4.3 Step 1 Identify subsystems which can be calibrated independently 
 
Depending on the standard available equipment sensors, subsystems can be calibrated 
independently.  
 
In the example case, the heat pump (HP) control system is typically equipped with 
temperature sensors at the inlet and outlet of the evaporator and condenser loops, boiler 
temperature sensors, switches for floor heating, floor cooling, domestic water heating modes, 
and power consumption of the HP. A simple physical HP energy balance model is sufficient 
to describe the HP's dynamic response. A relative efficiency factor (compared to the data 
sheet) and a COP correction factor are calibrated based on the measured data. The floor 
heating power calculated from the measured data may suffer from discretization noise due to 
the low accuracy of the temperature sensors, but this effect averages out. The maximum 
difference in cumulative floor heating power at any time is less than 1%. 
 



 
Figure 2: Model predicted floor input/output temperatures and measured temperatures. 

 

 
 
 
The PV-system power output is accurately described as a function of the measured solar 
influx and needs no further calibration 
 
 
4.4 step 2 Identify special time series in which a subset of parameters can be discarded  
 
We identify specific time periods during which some parameters can be excluded, thereby 
reducing the number of parameters to be identified. For instance, in the spring and autumn, 
there are extended intervals when the heating system is off, so the floor heating system has no 
impact. We also leverage the fact that different physical transfer mechanisms have distinct 
dynamics. For example, ventilation and solar radiation have a faster dynamical effect on space 
temperature than heat conduction. By selecting time periods when the effect of a particular 
transfer mechanism is greatest, these mechanisms can be calibrated independently. For 
instance, ventilation can be calibrated when there is a large difference between indoor and 
outdoor temperatures, preferably when there is no heating or cooling. Meanwhile, solar 
radiation can be calibrated more effectively during transitional seasons when there is less 



difference between indoor and outdoor temperatures. The effect of solar influx through 
windows on room temperature heavily depends on internal and external shading. 
The dynamics of solar influx through windows differ significantly from those of thermal 
conduction or ventilation, which is correlated with wind speed. 
 

 
 
 

  
Figure 3: (top) simulated effect of solar radiation through each window and (bottom) simulated effect of 

infiltration and exfiltration  

 

 
 
4.5 step 3 Overall parameter estimation 
 
After fixing parameters independently identified in the previous steps the parameters are not 
yet fixed are calibrated, using a non-linear output error minimization solver. 
 
For the example case the result is shown below. 

 
Figure 4: Measured and model predicted living room temperatures and floor heating mode  

 



Although the dynamics is described sufficiently accurate over the total time series, there are 
periods with high mismatch that need further analysis.  For example, in March sensor values 
of the heat pump mode and of solar influx were frozen for 5 days. In the parameter 
minimization problem such periods are neglected in calculation of the output error. 
 
4.6 Future directions for the advancement of the methods 
 
This method has been applied in various office buildings  for monitoring and calibration in 
the Mooi Brains for Building project and in several apartments as part of the Horizon2020 
Syn.ikia project for a model predictive controller. This controller has been successfully 
implemented in various apartments, doubling the self-utilization of solar power. Important 
future directions for development include making the method more robust against deviations 
in building, installation, and user behavior. This includes dealing with failed sensors, incorrect 
weather data, and neighboring apartments that are either very warm or hardly heated at all.  
 
Another important direction is the development of automatic procedure for the calibration 
process to minimize the time required to configure the controller with an adequate prediction 
model for the MPC. For example, maintenance parties have suggested a configuration time of 
only several hours for a typical office building. 
Main items in achieving fast calibration are automatic configuration of the heat and 
ventilation network from standard BIM/BEM formats and robust parameter estimation from 
BMS history datasets with medium or even low informative data quality. 
 
 
5 CONCLUSIONS 
 
In the future, it will become increasingly important for buildings, including residential and 
commercial campuses, to align energy demand with the irregular availability of sustainable 
energy. At the same time, it is crucial to stay within the existing capacity of the energy grid to 
prevent congestion. Effective control is necessary to respond properly to signals from the 
Distribution System Operator (DSO) and the energy market. Currently, managing active 
components like climate installations and thermal buffers is often too time-consuming and 
costly, leading to the preference for battery solutions or controlling electric vehicle charging 
stations instead. Automatic methods for calibrating model-based controllers can significantly 
contribute to reducing the initialization time and costs of these controllers. The calibration 
methodology described here can provide a solution and has been useful, for example, in 
applying a controller in Syn.ikia to enhance the self-utilization of PV energy. In the coming 
period, various projects will focus on developing an automatic calibration method. It is also 
important that this method is robust against different deviations in user behaviour and failures 
in sensors and installations. Additionally, further work will be done on the hybrid building 
model, including an open-source model for evaluating renovation measures of residential 
properties, with calibration based on the energy usage of the building’s initial configuration 
(Kornaat 2023). 
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