Ventilative Cooling: Modeling + Simulation Challenges

Jan Hensen

j.hensen@tue.nl

Technische Universiteit **Eindhoven** University of Technology

AF BULLI

Where innovation starts

TU

Ventilative cooling

Depends on air flow and temperature/ enthalpy differences affected by dynamically interacting complex sub-systems

Air flow modeling methods

- "Simplified" expressions
- Mass flow balance network method
- Computational fluid dynamics (CFD)

Can be used separately or combined with building energy modeling (BEM)

Air flow modeling - simplified

- n = .7 ACH
- Q = Q50 / K
 - (K ~ 20 for heating season urban NL)
- LBL-method

 $Q = L(A \Delta t + B \upsilon^2)^{0.5}$

where Q = air flow rate (L/s) L = effective leakage area (cm²) A = `stack' coefficient $\Delta t = \text{average outside/inside temperature difference (K)}$ B = wind coefficient $\upsilon = \text{average wind speed, measured at a local weather station.}$

• Etc

Air flow modeling – simplified + BEM

Uncertainty analysis (1984 style): variability in heating energy demand of low-energy houses due to (stochastic) occupant behaviour in terms of Tset, Qint, ACR

/ Building Physics & Services

12-9-2014 PAGE 4

Technische Universiteit

University of Technology

Eindhoven

Air flow modeling – mass balance network

for each branch

$$\dot{m} = \rho C_i (p_i - p_j)^n [kg / s]$$

- for each non-boundary node $\sum \dot{m} = 0[kg / s]$
- for each boundary node p = "known"[Pa]

Technische Universiteit **Eindhoven** University of Technology

Air flow modeling – flow network + BEM

				transmitted direct solar radiation		
Floor	Floor Maximum sensible		Sensible cooling load reduction			
level	vel cooling load		due to the double-skin façade			
	Case A	Case B				
	kW	kW	W	W/m^2 floor	%	
8 th	3.53	3.29	240	6	7	
7 th	3.51	3.24	270	7	8	
6^{th}	3.50	3.20	300	8	9	
5^{th}	3.50	3.14	360	10	10	
4^{th}	3.45	3.08	370	10	11	-
$3^{\rm rd}$	3.38	2.95	430	11	13	
2^{nd}	3.14	2.67	470	13	15	
	r	2000.00 -	3 6	9 12 15 Timesteps	18 21	24

Air flow modeling – flow network + BEM

Passive cooling

- External shading
- High thermal mass (exposed floor / ceiling, ribs)
- Low energy cooling
- All air system
- Night ventilation
- Top cooling
- Heat recovery

Air flow modeling – flow network + BEM

Using calibrated building + systems model, 10 operation scenarios were simulated: 6 scenarios with various combinations of flow rates and control periods, 5 scenarios with reduced cooling coil capacity

Air flow modeling – CFD

Source: IBPSA-USA

Conservation of

- Mass
- Momentum
- Energy
- Species

Air flow modeling – CFD

Air flow modeling – CFD

Building components, such as balconies, can lead to very strong changes in wind pressure distribution on building facades

CFD modeling of air flow around a building

Computational modeling of air flow in an urban area*

LES simulation of heat transfer around a building

*Montazeri, H., Blocken, B., Janssen, W.D., van Hooff, T. CFD evaluation of wind comfort on high-rise building balconies: validation and application. The Seventh International Colloquium on Bluff Body Aerodynamics and Applications Shanghai, China; September 2-6, 2012.

Air flow modeling – CFD + BEM

12-9-2014 PAGE 12

Air flow modeling – CFD + BEM

- ➢Volume: 10 (m) *10 (m) * 3.33 (m)
- ≻12 surfaces
- > Duration = 1 day (31^{st} of March)
- ≻2 time steps per hour
- Location: Brussels
- ➤Free floating temperature

Air flow modeling – CFD + BEM

Best modeling approach?

Case: displacement ventilation

Performance indicator	А	В	С
cooling energy		++	
fan electricity	++	++	
whole body thermal comfort	+	++	+
local discomfort, gradient		+	++
local discomfort, turbulence intensity			++
ventilation efficiency		0	++
contaminant distribution	-	-	++
whole building integration	++	++	
integration over time	++	++	Technische Universiteit
		IU	Eindhoven University of Technology

Quality Assurance (QA)

- Ensuring that our model or simulation reproduces the state and behavior of the real world object, feature or condition. (= fidelity)
- Ensuring that our simulation has meaning for the real world question being asked (= usefulness)

QA: best modeling approach?

/ Building Physics & Services

12-9-2014 PAGE 17

QA: data uncertainty / model complexity

Figure 6 Potential errors in performance prediction vs. model complexity/ level of detail [11]

QA: measurements vs. simulation

Measurements essential for verification, validation and calibration !

QA: don't simulate when

- 1. the problem can be solved using "common sense analysis"
- 2. the problem can be solved analytically (using a closed form)
- 3. it's easier to change or perform direct experiments on the real
- 4. the cost of the simulation exceeds possible savings
- **5.** there aren't proper resources available for the project
- 6. there isn't enough time for the model results to be useful
- 7. there is no data not even estimates
- 8. the model can't be verified or validated
- 9. project expectations can't be met
- **10.** system behavior is too complex, or can't be defined

Banks & Gibson, 1997

QA: do simulate but

Black Belt Energy Modeling Matrix

Belt		Capabilities			
e	White	 Collect modeling input data 			
aine	Yellow	 Perform input data calculations 			
Tra	Orange	 Develop building geometry and zoning 			
Tech- nician	Green	 Create building input file using software wizard 			
	Blue	 Build minimally-code compliant building model 			
	Purple • Review results for reasonableness				
e /st		 Complete calibrations 			
Sor	Brown	 Perform complex modeling 			
A C		 Complete detailed QC 			
		 Complete system level calibration 			
	Red	 Understand the algorithms 			
ster		 Use supplemental analysis 			
Mas	Black	 Balance modeling level of detail against accuracy of results needed to support decision making 			

E Franconi, RMI, 2011

Technische Universiteit **Eindhoven** University of Technology

TU

QA: how accurate are predictions

QA: and in case of uncertainty in

- Weather (frequency, missing variables, local micro climate, climate change,)
- Wind pressure distribution (due to shape and surroundings)
- Pressure flow characteristics of "openings"
- Occupant behavior (operable building elements, set points,)
- Organizational changes (company, family make-up, ...)
- Behavioral changes (rebound effects, societal changes, ...)

Conclusions

Assuming correct and appropriate use, building performance simulation:

- Can be pretty good for relative comparisons including contrasting design solutions, sensitivity analysis, robustness analysis, (multi objective) design optimization, scenario studies, etc., but
- Is generally quite poor in absolute predictions, such as future real world energy consumption

ANCE

OPERATION

ND

Edited by Jan L. M. Hensen

and Roberto Lamberts

A