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1, INTRODUCTION

Dunl¡¡c the past 30 years many experimental and

numerical studies have been carried out concerning

convective phenomena within cells. Most of these

studies deal with fluid motion due only to temperature

gradients. Nevertheless, fluid motion may be induced

by density variations due to gradients of other scalar

quantities. One of these quantities can be pollutant

concentration within the fluid. Such a phenomenon.

combining temperature and concentration buoyancy

forces, is called double-diffusion.
Double-diffusion occurs in a very wide range of

fields such as oceanography, astrophysics, geology,

biology, chemical processes, etc. Ostrach [ll and

Viskanta et al. l2l carried out a very complete state-

ol-the-art review. Ostrach focused his attention on the

description of many types ol flows (along flat plates'

in plumes, in rectangular enclosures) while Viskanta

er a/. mostly studied fluid motions in thermohaline

solutions.
Gebhart and Pera [3] were among the first ones to

numerically study double-diflusion lor cases ol ver-

tical laminar fluid motions along surfaces or in
plumes. In this study, special attention was paid to

the influence of non-dimensional parameters relcvant

to double-diffusion, on the heat and mass transport

processes; transition to turbulence was mentioned' [n

ilAs, n";un [4] completed a fundamental study ol
scale analysis relative to heat and mass transport pro-

cesses within cavities. submitted to horizontal tem-

perature and concentration gradients' Pure thermal

òonvcction, pure solutal convection, heat transtèr

<lriven llows, and tlass transtèr driven llows were

taken into ¿rccount. Furthermore. in another report'

Trevisan and Bejan [5] studied the boundary laycr

tlow in the same confìguration (uncler the stationarv
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regime) and varied several non-dimensional par-

ameters: the Lewis and Prandtl numbers, and the

buoyancy ratio. Lin et al. 16l repeated a similar study

relative to the behaviour of the whole flow, under the

unstationary regime. Other numerical works which

are mainly concerned with chemical vapour depo-

sition processes [7] dealt with very low Prandtl num-

ber (0.01) gases.

Experimental studies dealing with thermosolutal

convection within rectangular cavities submitted to

horizontal temperature and concentration gradients

have been perlormed [8-10]. A layered flow structure

was observed, according to particular values of the

buoyancy ratio and of the Lewis number (very large),

with both opposing or aiding buoyancy forces' The

experimental results were in good agreement with Lee

and Hyun's numerical results lor doublediffusive con-

vection in a rectangular cavity, under the unsteady

state u I, l2l.
This paper describes the results ola numerical study

of steady-state double-diffusion in a square cavity

ûlled with air (Pr:0.71), submitted to either aug-

menting or opposing temperature and cÔncentration

buoyancy lorces. The numerical procedure is based

on the SIMPLER algorithm [13]. In the frrst part

of the numerical study, the effect ol location of the

pollutant source on the hot or cold vertical walls, and

ol the positive or negative value of the concentration

expansion coefficient on fluid motion, is studied' A
parametric study ol the influence ol the strength of
the concentration buoyancy lorce on fluid motion and

on he¿rt or mass transler rates is carried out' The

second part is devoted to the study o[ the effect of
thermal and solut¿l diffusions on helt and mass trans-

ler rates. The cavity is fìlled with air mixed with differ-

ent kinds of pollutants which h¿ve a Lewis number

r:rnge between 0.3 and 5. A quulitative study in the
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NOMENCTATURE

C

D

c*
c_
C.,

non-dimensional concentration ol
pollutant
concentration ol pollutant
reference concentration

CH concentration of pollutant on the
left and right vertical walls
mass diffusivity of pollutant through the
fluid mixture
gravi tational acceleration
height ol the enclosure
width of the enclosure
Lewis number, ø/D
buoyancy ratio, p 

" 
d,C I (p, L,T)

aveÍage Nusselt number (integrated over
a vertical axis)
local Nusselt number (i-position along a
vertical axis)
non-dimensional pressure
pressure
Prandtl number, v/ø
solutal Rayleigh number,

Qþ"(C"- C.) H3 l(vD)
thermal Rayleigh number,

9þr(7"- T.)H3 l(va)
average Sherwood number (integrated
over a vertical axis)

Sh, local Sherwood number (Èposition along
a vertical axis)

T non-dimensional temperature
T'i temperature
Tn reference temperature of fluid mixture
Tc, Tn temperatures of the teft and right

vertical walls
u¡, t\ ú non-dimensional velocities

(horizontal, vertical)
uI velocities
x¡, x, I non-dimensional coordinates

(horizontal, vertical)
xI coordinates.

Greek symbols
ø thermal diffusivity
ß" coefficient olvolumetric expansion due to

concentration change

þ, coefficient of volumetric expansion due to
temperature change

ôs concentration boundary layer thickness
ôr thermal boundary layer thickness
v kinematic viscosity of fluid mixture
p* density of fluid mixture
p* reference density of fluid mixture

s
H
L
Le
N
Nu

Nu,

P
P'I

Pr
Rat

Ra,

Sh

case ofopposing flows helps to physically understand
the influence of the Lewis number on fluid motion. A
quantitative analysis enables us to quantify the aver-
age heat or mass transfer rates in the two limiting
cases ol heat transfer driven flows (high temperature
gradients) and mass transler driven flows (high con-
centration gradients).

2. PHYSICAL AND NUMERICAL MODELS

2.1. Physical Model
The physical model is a square. two-dimensional

cavity, whose upper and lower horizontal walls are adia-
batic and impermeable; the vertical ones are at differ-
ent levels of temperature and concentration, in order
to generate fluid motion (see Fig. l).

The fluid contains a pollutant concentration. The
pollutant and the fluid are completely mixed. There-
lore, the system to be studied is the fluid mixture (fluid
and pollutant).

2.2. Model Equations
The primitive variables of double-diffusion prob-

lems are the same ones as lor pure convection prob-
lems (i.e. velocities, pressure, temperature), with an
additional scalar quantity, which is the pollutant con-
centration of the fluid mixture. The behaviour o[ this
quantity is globally similar to the temperature one.

As a result, the mathematical model of double-
diffusion includes a concentration equation, obtained
in the same way as the energy equation (mass balances
in control volumes). Moreover, the buoyancy con-
centration force is taken into account by considering
that lbr small density variations, the density of the
fluid at constant pressure depends on the temperature
and species concentration [4]
p* x p.ol(ôp*lôT*)"(7" -T-)

*@p*lôC*)r(C*-C-)+ "'. (l)

By analogy with the thermal processes, one can define
a concentration expansion coefficient

É.: -Qlp*)(ôp*lôC*),. (2)

It is worth noting that the concentration expansion
coefrcient is slightly diflerent from the thermal one:

þ-ç (air or water) is always positive (an increase in
temperature induces a decrease in density) while p,
may be either positive or negative (an increase in
pollutant concentration. respectively, induces a
decrease or an increase in density). These con-
siderations lead to the Boussinesq approximation and
to the vertical momentum cquation.

The dimensionless variables ol the stated problem
are

x¡: xllu (3)
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T'- Tc

g'=Çore

C(O,Y)=1 e¡ 0 (16)

C(l'Y):g st 0 (17)

ôT(x,t) ôC(x.O) ôC(x,t\
:-:-:-:v. ôx Òx dx

(l 8)

òrf' òc'
---oòn òn

Frc. l. Studied geometry

ôT(x,0)
ôx

u¡: ulilla (4)

r:# (s)

c:# (6)

P: P*P*a2lHt' (7)

The reference temperature and concentration are
(Ts * Tò 12 and (C" + Cç)/2, respectively.

With the above-mentioned dimensionless variables,
the mathematical problems to be solved are:

continuity equation

!: o, (8)
ox¡

momentum equation

ôu, ô2u, APu,? - Pr# : - = 
i Rar Pr(T-0.5)õ,''ox¡ oxjoxj ox¡

2.3. Dimensionless Parame ters
In equations (9) and (l l), one must notice the pres-

ence of four dimensionless governing parameters:

thermal Rayleigh number

^ 9þr(Tr-T.)H'Rat:"--::ar-:-; (19)

solutal Rayleigh number

(20)

energy equatlon

species diffusion equation

ôc | ô2c
rye- rrffi:o' (ll)

The boundary conditions ofthe stated problem are

u(0,y): u(l,y): a(x,0) : u(x,l) :0 (12)

u(0,y) : u(l,y) :u(x,0) : u(x, l) : 0 (13)

r(o,y) : I (14)

r(,Y):O (15)

Prandtl number
(e)

ôT ô27It¡- - 

-:0:
'dx¡ dxjôxj

(10) Lewis number

v
(2r)Pr: -i

d

Le
d,

D

Each of these parameters influences the fluid motion.
Varying the values of thermal and solutal Rayleigh

numbers modifies the buoyancy forces. Since the
concentration expansion coefficient is negative or
positive, and according to the location ofthe pollutant
concentration on the hot or cold vertical walls, the
solutal and thermal buoyancy lorces may be either
augmenting or opposing each other. In fact, four con-
figurations offlows can be observed:

.5)õ,,0C
PrIRat-

(22)
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t'-Tx

c'- e

T'= În

c''Ç

r'- Tc

c'- e

t'- Tc

c'- e

I'- fx

C-e

T1-Ti

C-Q

T'- 1o

c'- Ç

aiding Aows

8.orRa">0
2Â

8!orRa!<o
zb

ErorRa!>o
zd

orpposing flo*s

(23)

t'-Îc
C'-e,

ß"orRa.<0
?-c

. two cases dealing with augmenting buoyancy
lorces (see Figs. 2(a) and (b));

. two cases dealing with opposing buoyancy forces
(see Figs. 2(c) and (d)).

The Lewis number represents the ratio between the
thermal and solutal diffusivities. It can also be ex-
pressed as a function of the Schmidt number (anal-
ogous to the Prandtl number)

Flc. 2. Studied configurations (CH > C., 7r, > ?"c): ---+, solutal buoyancy lorce I .....* thermal buoyancy force.

From both expressions of Prandtl and Schmidt num-
bers, one can write

u:* e4)Pr'

For a Lewis number greater than unity, the solutal
diffusivity is stronger than the thermal one; for a
Lewis number less than unity, the thermal diffusivity
is stronger than the solutal one. This will be studied
in the second part of our numerical analysis.

2.4. Heat and Mass Transfer Rates
The local Nusselt (heat transfer rate) and local

Sherwood (mass transfer rate) numbers on the ¡
position along a vertical axis are evaluated from the
lollowing expressions (using previously mentioned
dimensionless variables) :

^t.. - 
artvu,: u,T- U-. (25)

(26)

The use ofthese expressions enable us to obtain con-
servative heat and mass transler rates within the cavity
U5, l6l. They include diffused and transported quan-
tities which are integrated over the vertical axis in
order to calculate the average heat or mass transfer
rates (,ðy'a or .Sft) along this axis.

2.5. Numerical Procedure
The numerical resolution is the SIMPLER (Semi

Implicit Method for Pressure Linked Equation
Revised); developed by Patankar [3]. The model
equations are spatially discretized over a staggered
grid using the finite difference method and then inte-
grated over control volumes. The SIMPLER algo-
rithm is an iterative scheme which consists of cor-
recting velocities a priori estimated with the
momentum equations. As the iterative process con-
verges, the velocities will fit the pressure correction
equations derived lrom the continuity equation. The
pressure and pressure correction equations are solved
with a direct method, while lor the other equations
(momentum, energy and concentration), a Tri-Diag-
onal Matrix Algorithm (TDMA) [17] is used. In order
to improve the convergence ol the iterative procedure,
an under-relaxation of the equations is necessary. The
convergence of the algorithm is reached when the
residual of the momentum equations is less than I 0 2.

The physicat domain is discretized into a non-unilorm

sh,: ¡,(,,r-*#)

vS¿: -D

1î

ïj 1j
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Tchebycheffgrid IlS], whichensures thingridspacing and the mass and heat transfers are diffusion domi-

close to the walls, and a coarser mesh system in the nated.

core region.

3.l .2. Comparison of aiding fows (cases 2(a) and (b))
In the following numerical study, the respective

locations of thermal and solutal boundary conditions
are varied. The previous thermosolutal convection
configuration is compared with the case described in
Fig. 2(b) (the pollutant concentration is located on
the cold vertical wall of the cavity, Ras :
- Ra, - - lOu). This configuration leads to identical
isopleths of temperature to the former ones (Fig. 3(c)).

Nevertheless, although there seems to be a similarity
between the concentration and temperature patterns,
one must keep in mind that concentration and tem-
perature boundary conditions are reversed. Hence,
there is a complementarity between the temperature
and concentration dimensionless values; Sherwood
and Nusselt numbers are the same in absolute value,
but of opposite signs (Sherwood number is negative).

3.1.4. Influence of the solutal Rayleigh number
The configuration of the last series of numerical

simulations relative to the effect of buoyancy lorces is

described in Fig. 2(d). Solutal and thermal Rayleigh
numbers are positive, but the boundary conditions
are reversed. The thermal Rayleigh number is kept
constant (Ra' : 107), the solutal Rayleigh number is

increased from l0ó up to 5 x 107. From Figs. 4 and 5,

one can notice a stagnant core region (except for pure
diffusion); the flow is mostly driven by fluid motion
within the boundary layers. In the case of pure mass

or thermal diffusion, there is no vertical buoyancy
lorce, Hence, the velocities are equal in absolute value
and the fluid motion is circular (Fig. 5(e)). There is

no boundary layer regime; the isopleths of con-
centration or temperature are parallel and vertical
(Fig. a(e)). The flow is driven by the net effect of
the two buoyancy forces. When the solutal Rayleigh
number is less than the thermal one, the convection is
thermal dominated and the flow is clockwise (Figs.
a(a)-(d) and 5(a)-(d)). A solutal Rayleigh number
greater than the thermal one induces a concentration
dominated counterclockwise flow (Figs. a(f , (g) and
S(Ð, (g)). When the net effect of thermal and solulal
buoyancy forces is opposite, symmetrical cases (Figs.

4(b), 5(b),4(f) and 5(f)) are to be noted. For each of
these simulations, the evolution of the average Nusselt
number along the hot vertical wall was plotted (Figs.

6(a) and (b)). A new dimensionless governing par-
ameter is used, i.e. the buoyancy ratio N. This number
is the ratio between the solutal and the thermal buoy-
ancy lorces

":4'î9: e7)
þrLT"

where

AC* : C*(left wall) - C*(right wall)

LT* : T*(left wall) - T*(right wall)

3. RESULTS AND DISCUSSION

3.1. Effect of Buoyancy Forces
The flows considered in this part are augmenting or

opposing flows, with Le:l and Pr:0.7 (air). A
Lewis number of unity means that the diffusion of
pollutant concentration is the same as diffusion of
temperature. As a result, the isopleths of con-
centration and temperature are similar.

3.1.1. Comparison of pure thermal conection-aiding

fows
This first study consists of comparing pure thermal

convection with thermosolutal convection, in the case

of augmenting flows (Fig. 2(a)). For pure thermal
convection, the thermal Rayleigh number is 2 x lOa,

while a solutal Rayleigh number of lOa and a thermal
Rayleigh number of lOa are used to simulate thermo-
solutal convection. The same results are obtained:
isopleths of concentration (or temperature) (Fig.

3(b)) and Sherwood (or Nusselt) numbers (Tables I
and 2) in the latter case are similar to isopleths of
temperature (Fig. 3(a)) and Nusselt numbers in the

lormer case. This is explained by the fact that the

contribution of the thermal and solutal buoyancy
forces aiding each other is the same as the thermal
one occurring in pure thermal convection. As a result,
the two aiding solutal and thermal buoyancy forces
(identical thermal and solutal diffusivities) are to be

likened to the thermal natural convection effect.

3.1.3. Comparison of opposing flows (cases 2(c) and
(d))

The same kind ol comparison is led concerning
opposing flows (Figs. 2(c) and (d)). Both temperature
patterns are presented in Figs. 3(d) and (e). Since

thermal and solutal buoyancy lorces are opposite, the

buoyancy effects are cancelled; convection disappears

It can be either positive or negative, according to the
values ol the concentration expansion coefficient and
the location of the pollutant source (on the hot or
cold vertical wall). Figure 6(a) (N ( - l) shows that,
when the fluid motion is induced by the thermal buoy-
ancy force, the transported energy increases with N,
i.e. the net buoyancy lorce increases. Since the fluid
motion is clockwise, the buoyancy lorce is maximum
at the bottom of the hot wall, hence the heat transler
rate is maximum. The reversed phenomenon is to be

highlighted, when N >- - L (a solutal vertical gradient
induces the fluid motion (Fig. 6(b)). Under these con-
ditions, there is a correlation between the average
Nusselt number within the cavity and the global buoy-
irncy lorce Ra'x abs(l*N) (Table 3). (ln the case

ol Le: l. Ratxabs(l+N): Rna+Ras.) This
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(a)

(d)

o)

(e)

(c)

Frc. 3. Isopleths of temperature (pure thermal convection) : (a) Ra1 : 2x lDa. Isopleths of ternperature
(thermosolutal convection, Le: l): (b) .R¿r: lOa. Ras : 104, aiding flows; (c) Àat: ¡gr, Rø, : ¡¡r,

aiding flows; (d) Rø1 : l0a, iRas : l0a, opposing flows; (e) Rat : 104, Rds : - l¡a, opposing flows.
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the left
aidingTable l. Local Nusselt numbers along the lelt vertical wall,

Le: l, Pr:0.71, 'R¿r: tOa

Dimensionless height Local Nusselt number

0.001
0.009
0.022
0.039
0.062
0.089
0.120
0.155
0.193
0.235
0.279
0.326
0.374
0.424
0.475
0.525
0.576
0.626
0.674
0.72r
0.765
0.807
0.845
0.880
0.91I
0.938
0.961
0.978
0.991
0.999

4.16
4,t7
4.20
4.25
4.32
4.39
4.42
4.42
4.36
4.25
4.09
3.89
3.65
3.39
3.1 I
2.82
2.52
2.23
1.93

1.65
1.39
r.ló
0.97
0.83
0.74
0.68
0.65
0.64
0.63
0.63

relationship is illustrated in Fig. 7; the empirical cor-

relation is given as follows:

Nu:0.22(Rq x abs (l +N))o'". (28)

The correlation coemcient is very good (0'9999)' This

relation seems to be in good agreement with the one

developed by Trevisan and Bejan [5] for a cavity sub-

mitted to uniform heat and mass fluxes along the

vertical sides. Moreover, the value of the exponent is

very close to the boundary layer characteristic-value

relevant to natural convection in a cavity heated from

the side [4].

3.2. Efect of the Lewis Number

The last series of numerical investigations studies

the influence of the Lewis number on the heat and

mass transfer The con-

figuration to ed in Fig'

2(d), dealing and con-

centration ho filling the

cavity is air (Pr:0.71) mixed with different kinds ol
pollutant species. The Lewis numbers ol pollutant

mixed wlth air may vary between 0.2 and 5 (25'C and

I atm) [3]. The
the pollutant s

be positive. It
sources mixed
characteristics: the concentration expansion coeffi-

cient ol these species may be negative, and the Lewis

Table 2. Local Nusselt and Sherwood numbers along

u..ii"uf *uff, Le: l, Pr :0.71, Ra¡: R¿s : lOa,

flows

Dimensionless
height

Local Nusselt
number

Local Sherwood
number

0.001
0.009
0.022
0.039
0.062
0.089
0.120
0.155
0.193
0.23s
0.2'19
0.326
0.374
0.424
0.475
0.525
0.576
0.626
0.674
0.721
0.765
0.807
0.845
0.880
0.91I
0.938
0.961
0.978
0.991
0.999

4. l8
4.18
4.2t
4.26
4.3J
4.39
4.43
4.42
4.36
4.25
4.09
3.89
3.65
3.39
3.1 I
2.82
2.52
2.22
1.93
r.ó5
1.39
Ll6
0.97
0.83
0.74
0.68
0.66
0.@
0.64
0.ó4

4. l8
4.18
4.21
4.26
4.33
4.39
4.43
4.42
4.36
4.25
4.09
3.89
3.ó5
3.39
3.1 I
2.82
2.52
2.22
L93
r.65
1.39
l.l6
0.97
0.83
0.74
0.68
0.66
0.u
0.64
0.64

number of such constituents mixed with water ls

greater than 100." 
The Lewis number deals with relative influence of

thermal and mass diffusions. It has an effect on the

3.2.1. Qualitatioe s tudlt
Nurierical results referring to the Lewis numbers

varied lrom 0'5 uP

(Rat : 107, rRa. : 19

numbers along the

(Fig. 8). From this fi
registered:

o The Sherwood number increases with the Lewis

number. This
(29)-(31) dev

here is a heat
leigh number
number).

o The Sherwood number is maximum at the bot-

tom of the left hot wall, and it decreases lrom the

bottom to the top of the wall' Since the thermal buoy-

ancy lorce is stronger than the concentration one' the
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(a)

(b)

(c)

(d)

(e)

(Ð

(g)

Ftc. 4. Isopleths ol temperature (Le : l, Rar: t07. opposing fìows): (a) Ra. : 1go; (b) R¿s : 5 x t0ó;
(c) Rar:8x 106;(d) Rar:9x f 06;(e) R¿.: 107; (l),Ra, = t.5x l0?;(g) Rar:5x107.
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(a)

(e)

(b)

(f)

(c)

G)

(d)

5. Streamlines (Le : 1, Rur : ¡gt, opposing fìows): (a) Rø. : 190 15, Rc" : 5 x 10Ó'

(c) R¿r*: tìx l0ô; (ri) Ra*:9x 106;(e) Rar: 107: (l) Rar: l.5x t07l(g) Rør:5x 107.

841
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2
èo
ru

q,

Élo
Ê
c)
Êt

o

Þo
()

c)

o
É
a¡

.E
â

I

0.9

e.8

ø.1

0.6

0.5

0.,t

0,3

ø.2

0. I

0

Nusselt m¡mber along the bot wall

(a)

lo¡

Ra". l1+Nl
Frc. 7. Opposing flows, .Raa : 107, Le : l, l{ : -0'01' - 5'

Table 4. Heat transfer driven flow, Rat:19r, Pr:0"71,
non-dimensional thermal boundary layer thickness, average

Sherwood number

Le Sc õ.lH Sl¡

l0

rd

2
o

rt)

t0-

I

0,9

0.8

ø.1

u.6

0.5

0,.t

0.3

ø,2

0.¡

ø

0.5
0.6
0.7
0.8
0.9
t.0
2.0
3.0
4.0
5.0

0.35
0.42
0.49
0.56
0.63
0.70
1.40
2.t0
2.80
3.50

0.039
0.032
0.028
0.024
0.022
0.019
0.0r0
0.007
0.005
0.004

I I.0
t2.5
t3.7
14.8
15.6
t6.4
2r.3
24.4
26.'7
28.7

0510t5

0r02ø

2s 25 3e 3õ

gt0

Nrsselt uumber along the hot wall

o)
Frc. 6. Local Nusselt number along the hot wall. op-
posing flows, Rar:19t, Le:l: (a) N: -0.1' -l;

(b) ¡/ : - l, -5.

fluid motion is clockwise. The fluid near the bottom

of the left wall is very polluted, and the concentration

decreases as it moves along the left, non-polluted ver-

tical wall; the velocity ol the fluid mixture also

decreases. Therefore, the Sherwood number along the

le[t wall decreases.

From isopleths of concentration (Fig. 9), it is to be

noticed that with Lewis numbers less than unity, the

mass transfer process is diffusion dominated. The

solutal boundary layer is rather thick' and the iso-

concentration lines are tilted. The more the Lewis

number is decreased, the more the isoconcentration

lines are tilted, the more the pollutant concentration

is diffused. The reverse phenomenon occurs when the

Lewis number is greater than unity. The solutal

boundary layer becomes thinner and thinner and the

pollutant concentration less and less diffused. As the

Lewis number is increased up to 5, the major mass

transfer process is mass diffusion within the solutal

boundary layer. The core region is filled with a homo-

geneous fluid. The massline pattern [5] (Fig. 10) in the

case of Le : 5 reinforces fhis assertion.

Table3.AverageNusseltandSherwoodnumbers(alongaverticalaxis), Le:l,Pr:0-'71
Nis varied lrom -0.01 to -5

Rar : 16r
Rat

9x106 t.5xl07 5xt07105 106 2x 106 5 x 106 8 x l0ó

S/r

-05
t36

-13 6

-0 I

t6 0

- t6 0

-00
t64

-t64

-0.2
15.5

- r5.5

- 0.8
r0.6

- r0.ó

- 0.9
8.8

- 8.8

- r.5
t3.6

- 13.6

- 5.0
23.'7

-23.7

Le= I

+l,l=-l

+f{=-5
N=-l.5



+Le=,5
+Le=,8
+Le=l
oLe=2
+Le=5

lshl
Flc. 8. Local Sherwood number along

flows, Ray: 107, Rcs: l0ó
the hot wall, opposing
, Le :0.5, 5.

3.2.2. Quantit atiu e s tudy
Links were obtained between average Sherwood or

Nusselt numbers and the characteristic numbers of
double-diffusion, in the case described in Fig. 2(d).
Two configurations were studied:

(a) heat transfer driven flows;
(b) mass transfer driven flows.

Heat (respectively mass) transfer driven flows are
due to the temperature (respectively solutal) buoy-
ancy force. Therefore, the solutal (respectively ther-
mal) Rayleigh number is set to zero. This is an ideal
case which helps acquire a better understanding ofthe
influence of the characteristic numbers on the fluid
motion.

3.2.2.1. Heat transfer driuen fows. In order to
obtain these links, we used the results of the scale
analysis developed by Bejan (vertical flat plate) [4].
The scale analysis consists of evaluating the con-
vection equations under the boundary layer regime.
The length scales of the phenomena are the thermal,
concentration and dynamic boundary layer thick-
nesses, and the height ofthe vertical plate. The bound-
ary layer thicknesses are linked with the prandtl.
Schmidt and Lewis numbers. Therefore, several cor-
relations are to be obtained according to these values.
In the case of a Prandtl number less than unity, the
following results are obtained (vertical flat plate) :

Sc > I Sh x Lett3 prtttz Ratt4 e9,)

sc < l, Le > I Sh x Letl2 Pr,ta Rato (30)

Sc < I, Le < I Sh x Le prtt4 Ra+t4 . (31)

To flt these equations on the mass transfer process
in a cavity, one must make sure that the concentration
boundary layer is smaller than the width of the cavity
[4]. The aforementioned values of the average Sher-
wood number are obtained lrom the lollowing
expressions ol the concentration boundary layer
thickness (Sh x Hlõò:
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Sc > I õ.1 H æ Le- It3 Pr- ttt2 Ra- tta 
Q2)

Sc < l, Le > I ô¿lH x Le- tt2 Pr- tla Ra- tta

(33)

Sc <l,Le <l ô.lH x Le-t pr-tt4Ral. Q4)

The case to be studied here is a fluid (Pr : 0.7)
mixed with diffeient kinds of pollutant species
(Le:0.3-5); the thermal Rayleigh number is 107.

The non-dimensional thickness of the concentration
boundary layer is less than unity (Table 4). The aver-
age Sherwood numbers calculated from the numerical
model are sketched in Table 4. From equations (29)
and (31), one can check that the logarithmic value
of the Sherwood number linearly depends on the
logarithmic value of Ra¡tt+. Hence, we plotted the
lollowing relation:

ln (Så Àa; tra) : f (ln(Le)) (35)

to illustrate equations (29) and (31) (Fig. ll). From
Fig. I l, it can be pointed out that there seems to be a
transition in the region Le x l. The slope of the first
part of the atrve (Le < 0.7) is 0.8, while the slope of
the second paft (Le > 2) is 0.3. The second part ofthe
curve seems to be in good agreement with the results
of the scale analysis (equation (29)), while the first
one does not (equation (31)). This discrepancy can be
due to the very close Lewis numbers (0.3-{.7), but is
mainly due to the configuration of the cavity itself.
Applying this scale analysis to a tall cavity (with ver-
tical sides which can be compared to a vertical flat
plate) may induce more accurate results: the vertical
velocity in a tall cavity of aspect ratio LIH :0.254.5
tends to be identical to the one along a vertical flat
plate; in the case ofa square cavity, it is different [4].

3.2.2.2. Mass transfer driuenflows. A similar series
of numerical simulations were carried out in the case
of mass transfer driven flows. The scale analysis rel-
evant to the average Nusselt numbers gives the lol-
lowing results (Pr < l):

Le > l, Sc > I Nu x Le- ' Ra¿to Srtt' (36)

Le < l, Sc < | Nu x Le- ttz Ratt4 Sctt4 Q7)

Le > l, Sc < I Nu x Le ' Ra¡it 5r 'ro. (3S)

The thermal boundary layer thickness is calculated
from

Le > l,Sc > I õrlH x Le Ras rr+ 5r-t/z (39)

Ze < l, Sc < I õrlH x Lett2 Ras tra 5r- tta (40)

Le > I, Sc < | ôrlH x Le Ra! tic 5"- t/4. (41)

The input data and the results of the calculation
(thermal boundary later thickness. average Nusselt
number) are listed in Table 5. From equations (36)
and (37), it can be pointed out thar the logarithmic
value of the Nusselt number linearly depends on the
logarithmic value of Røfa. Hence, the tbltowing
relation was plotted in Fig. l2:

Numerical study oldouble-diffusive natural convection in a square cavity
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ln (Nrz Ra; tra) : f (ln (Le)) . (42)

Similar results to the heat transler driven flow ones
are to be highlighted:

(a) transition in the Le: I region;
(b) linear dependence on the Lewis number:

Le < 0.7: the slope ol Lhe curve is -0.3,

C. BÉcxErN ¿t ¿/

(a)

(d)

(b)

G)

(c)

Ftc.9. Isopleths olconcentration (Raa:107, Ras: l0ó, opposing flows): (a) Le:0.5; (b) Le:0.8;
(c) Le : I ; (d) Ze : 2: (e) Le : 5

Le < I : the slope of the curve is - 0.8

4. CONCLUDING REMARKS

A numerical procedure based on the SIMPLER
algorithm was used to investigate stationary thermo-
solutal convection in a square cavity submitted to



F¡c. 10. Mass lines, rRa": 1¡r, Ra. : 1go, opposing flows,
Le:5.

845

l-e
Flc. 12. Mass transfer driven flow, average Nusselt number

Numerical study of double-diffusive natural convection in a square cavity

âz

le{

t0r

tg{
10.

Le,

Ftc. ll. Heat transfer driven flow, average Sherwood
number.

Table 5. Mass transfer d¡iven flow, Ra.: ¡6r, Pr:0.71,
non-dimensional thermal boundary layer thickness, average

Nusselt number

Le Sc örl H Nu

Rayleigh number) and to the location of the pollutant
source, the fluid motion may be either clockwise or
counterclockwise; the combined effects of thermal
and solutal buoyancy forces are to be compared with
the effect of one thermal or solutal dominated buoy-
ancy force, in the case oî Le: l. A correlation rele-
vant to Nusselt or Sherwood numbers was obtained.
In the latter series of numerical experiments, the Lewis
number is varied lrom 0.3 to 5, in the case of opposing
buoyancy forces. When the Lewis number is less than
unity, the concentration boundary layer is rather
thick; hence, the cavity is filled with a high diffusion
pollutant, the isopleths of concentration are tilted.
When the Lewis number is much greater than unity,
the solutal boundary layer is thinner, the pollutant
is diffused within the concentration boundary layer,
therefore the core of the cavity is filled with a homo-
geneous fluid. Wall heat and mass transfer rates are
quantitatively estimated from correlations in the cases
olheat transler driven flows and mass transler driven
flows. These correlations, which show a dependence
of heat and mass transler rates on Lewis number, are
in agreement with the plane vertical plate results.
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C. BÉcr¡rru el ¿i.

ETUDE NUMERIQUE DE LA DOUBLE DIFFUSION DANS UNE CAVITE CARREE

Résumê-La convection thermosolutale, en régime stationnaire, dans une cavité carrée remplie d'air,
soumise à des gradients horizontaux de température et de concentration, est étudiée numériquement. Dans
la premiêre sérìe de simulations, on étudie I'influence de la lorce de poussée solutale sur les taux de translert
deìhaleur ou de masse : les nombres de Lewis et de Rayleigh thermique sont constants (Le : l, ^Rat 

: 19r¡,
le nombre de Rayleigh solutal varie (Ra, : 16s à 5 x 107). La deuxième série de simulations se rapporte à

I'analyse de I'influence du nombre de Lewis sur le mouvement du fluide, dans les cas d'écoulements à lorce
de poussêe thermique dominante (Rat : ¡gz, rRa. : g¡ et à lorce de poussée solutale dominante (Rat : 6,

Ra. : 1¡z¡. Le nombre de Lewis varie de 0.3 à 5. Des corrêlations sont obtenues entre les taux de transfert
de chaleur et de masse et les nombres adimensionnels caractérisant les deux phénomènes.

NUMERISCHE UNTERSUCHUNG DER DOPPELT-DIFFUSIVEN NATÜRLICHEN
KONVEKTION IN EINEM QUADRATISCHEN HOHLRAUM

Zusammenfassung-Es wird die stationäre doppelrdiffusive Konvektion in einem quadratischen luftge-
lüllten Hohlraum unter dem Einfluß horizontaler Temperatur- und Konzentrations-Gradienten numerisch
untersucht. Eine erste Reihe numerischer Simulationen befaßt sich mit dem Einfluß de¡ kon-
zentrationsbedingten Auftriebskraft aul den Wärme- oder Stoffübergang: Die Lewis- und die thermische
Rayleigh-Zahl werden konstant gehalten (Le : l: Rar : 162;, die Konzentrations-Rayleigh-Zahl wird im
Bereich 105 ( Ra. ( 5 x 107 variiert. Eine zweite Reihe behandelt den Einfluß der Lewis-Zahl auf die
Fluidbewegung für thermisch getriebene (Ra, : 107;,R¿s : 0) und konzentrationsgetriebene Anordnungen
(Ra, : I ' .Ra. : ¡¡1. Die Lewis-Zahl wird dabei im Bereich 0,3-5 variiert. Es ergeben sich Korrelationen
zwischen den Wârme- und Stoffübergangskoelñzienten sowie für die dimensionslosen Kennzahlen, welche

beide Phänomene charakterisieren.

I{I4CJIEHHOE I,TCCNEÃOBAHLTE ECTECTBEHHOü KOHBEKIIIdII B KBAAPATHOü
NOJIOCTI,I

Arurot¡qnr-gficJreuao flccne,qyercr crauuoHapnuü nepeHoc reflJra rt Maccbl B ¡ano¡Heggoü Bo3ÃyxoM

xra4parnoü noJrocrr{ npn Har¡oxenr.ru rpa.quexToB TeMneparyp Lr Koxl¡eHTpaqrrfi a ropuroHra.nHrou
HanpaBJreHBH. B nepaoü cepnfi qícJreunbrx pacqerou r,tccteÃyercr BJlrtHHe noÃtevnoú cfirbl 3a cqer
pacrbopeHuoro Be[IecrBa Ha cKopocrb reflro- H Macco[epeHoca. flpn erov quc¡o Jluonca u reluronoe
quc¡o Po¡et coxpausrorcr nocrorHnbrMu \Le: Í, Rø. : 1gr¡, quc¡to Pgler anr pacrBopeHHoro

Beulecrna rr3Menrercc (Ra.: 1gs-5 x 10?). Bo uropofr ceprø pacqeroB ycrana¡rl{Baerct BJt¡{flrlne
quc¡a Jl¡rcnca Ha Ä"nxeulle xHÄ,KocrH Â¡n reqenuü 3a ct{er renJronepenoca (Rat : 16r, Ra. : 6¡ 

"Maccoreperroca (Ra, : ¡, Ra. : 1gt¡. H¡.rc¡o Jluro¡rca Bapblrpyerct or 0,3 ¡o 5. floryrenu o6o6rqarc-
ul¡4e cooTHouIeHHc Ärfl cxopocreñ tslulo- ri viaccoüËpeäo¡;a, BbipaxaeMË¡x tepes Geipasucpíibie KpHTo-

pr.lrì, xapaKTepu3yloulHe 3Tfr taJIeHHt.


