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ABSTRACT

The requirement is attainment of high quality computatíonal (cFD) solutions to
the Reynolds-averaged Navier-stokes'equations for buoyant and turbulent flows
in three-dimensional indoor geometries. popular CFD theory/codes stabilize
intrinsic dispersive error via artificial diffusion methoãs, with resultant
compromise of genuine physical diffusion processes. A new Taylor weak
statement CFD theory, and finite elemènt code implementation, represents a
potential significant accuracy/stabitity improvement for 3-dimensionâl buoyant
room air flow prediction. This theory and documentary validations are
summarized in this paper.

INTRODUCTION

problem specifications.

THE PROBLEM STATEMENT

Â statistical manipulation yields the RaNS pDE system governing thermal room
air flows. Following nondimensionalization, ánd idãntifying" the turbulent
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Reynolds number (Ret) of the turbulence closure model, the governing basic PDE

system for solution is

/ (u¡) = +. *(,",+ 
põ¡¡-nf,(' . o"')(#. 

#))- 
Ar@ôs = s (1)

/(@) = H.å(,," .+(#.#H)-se=o e)

along with the continuity constraint of divergence-free mean-flow velocity
vector u¡(x¡, t). Additional definitions in (1)-(2) include potential temperature,

O = (T -Tn,¡ù/(Tmax-Tmin), and kinematic pressure P =p/Po +2k/3, where k is

turbulence kinetic energy. The dimensionless groups are Reynolds number (Re),

Archimedes number (Ar=Gr/Re2), hence the Grashoff number (Gr), and Prandtl
number (Pr). A superscript "1" denotes the modeled "turbulent" counterpart.

The character of solutions to (1)-(2) depends on these groups, the distribution of

Ret and boundary conditions. Since Re>0 and Rer ) 0, each isolated equation is

elliptic, hence the mean-flow state variable q (x, t) = lu1,ü2,u3, @)1, and,/or its
normal derivative, is required known all around the problem statement
boundary. The solution process is thus classic initial-boundary value, up to

enforcement of the continuity constraint that u¡ is divergence-free. This
differential constraint becomes enforced kinematically, via ínexacú CFD theories,
as a modelled action of pressure P. One construction appends a Poisson equation

Ao) = -Y2o-v't'n*r=o (3)

to (1)-(2), rvhere superscript tilde denotes any approxímation to the true velocity

u, and n is the time-step index. The solution Q is then manipulated into a

pressure approximation Pfi*1 =P"-þn*t/1\f, which may then selectively be

replaced via the genuine pressure, a solution to

¿(p) = #-*{# *fiJ*u, nf ,'.o"',(fii.YJ) A.#=0 (4)

Appropriate boundary conditions are required to render (3)-(4) well-posed, cf.,

Baker, et.al. [3]. Finally, a closure model to determine Rel is required.

WEAK STATEMENT CFD ALGORITHM

A CFD algorithm for (1)-(4) gencral.cs solul.ions characterized by Re, Gr, I'r antl

ReÍ, since I'rr = Pr. The CFD state variable is q(x¡, t) = lu1, ü2, ü3, @; Q, P)l which
by partition (at the semi-colon) satisfies the PDE systems

/h) = aA*!ß,-rlì-s=0 (s). /(q^) = vzqo-s(q)=0 (6)r¿\'r/ - òt,¿r.Vt )il "-" \¿',

ln (5), fi = f ¡(q) is the kinematic flux vector whíle f f is the dissipation flux-vector
embodimc¡lt of the turbulencc closurc moclcl plus natural diffusion. In (6), thc

laplacian operates on ln = lq, P)T, and s = s(q) are the respective source term.

Any CFD algorithm generates an approximation to the true solution to (5)-(6) via
a denumerable set of decisions leading to an algebraic system amenable "to
computing." A dominating dispersive error mechanism is intrinsic to this
process for (5), ultimately leading to use of "artificial diffusion" mechanisms, e.g.,
"QUICK" differencing. The Taylor weak statement theory I7l-121, extended to
systems (5) yields creation of the PDE companion to (5) as

é,(q) = /(q) -þLt!(o/-9) (7)
dx¡ \ ¿xrcl

where .A; =àf¡/òq is the kinematic flux vector jacobian. Thereafter, any
approximation gN(x, t) to the true solution to (6) - (7) in the continuum is

N

q(x, t) = 4N (x, r) =,å *, (x) Q¡ ft) (8)

rvhere Y¡(x) are assumed known functions and Q¡(f) are the associated time-
tlependerit unknown expansion coefficients. Since'qN catìnot satisfy (6)-(7), the

error associated with 4N is minimizedby requiring the Taylor weak statement

TWS = I Or(r)/c(qN)dr=O,vi (9)

J"
be satisfied for any (all) known functions <Þlx). If the theory-designer Picks <Þ(x)

and Y¡(x) identical, a "Galerkin finite element" (FE) statement results.

Conversely, if one chooses <Þ¡(x) to be constants, then a "finite volume" (FV)

form is produced. Thereupon, the pertinent spatial semi-discretization permits
evaluation of the integrals defined in TWS, which for (7) always produces a

matrix ordinary differential equation (ODE) system of the form [4]

rwsh = lMld(9) +{R(Q)} = {o) (10)' dt
rthere superscript h denotes "discretization," [Mì and {R} are global rank square
and column matrices, and {0) = (Q(ú)} is the state variable approximation
coefficient set at the nodes of the mesh C)fr. Any ODE algorithm uses (10) for
tinle derivative evaluation; selecting the one-step 0 implicit procedure, for
example, produces the terminal algebraic matrix equation for computing as

(FQ) = tMl {Ø¡ - Q,) + ¡(e{R}n*r + (1-0) tR},)= {0) (11)

rr'hcre "n" denotes time step level. The discrete Galerkin weak statement for tl're

I'oisson cquation (6) directly produces the matrix systcrn

IFQ¡Ì = tDl (Q¡l- (s(ØÌ = {o) o2)

rlhcrc square matrix [D] is the discrete laplacian, {Q¡} is the nodal array of Q" or
Pl, and [S(Q)] contains dependence on 4fr via solution (Q(t)l from (11).

The generic solution process for (11)-(12) is a numerical linear approxirnation to
lhe Ncwton itcration algorithnr
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r¡(¡o)ll= -(r)'*, (13), (olll={o)".å{¡o)lÍ' (14)

where [/] is the (13) is formed
using calculus wton iterative
procãdu.es ,se s, Q.g.t Gauss-

Seidel, GMRES,

ACCURACY, STABILITY AND DISPERSION

The fundamental CFD decision is selection of the trial and test sPaces, in defining
constraint respectively. In the semi-discrete

mmensurate with algorithm order of accuracy, hence

nder mesh refinement. Linear FE and traditional FV

ond-order accurate, c.f ., 14, Ch. 4, 61.

Algorithm stability is of greater practical significance, as related principally to

coñtrol of the third-order ãispersive error mechanism. Specifically, any mesh of

measure h = Lx is incapable of resolving information of wavelength 2Ax,

yielding the characteristic, cascadingZLx oscillatory dispersive error mode. The

non-linéarity of the NS equation system amplifies this dispersion error, which is

.l *Pil8 '

typically damped
numerically to pro-
duce convergent iter-
ation hence smooth
solution. Figure 1

summarizes recent [2]
phase velocity and
amplification factor
determinations for
several popular FV
algorithms, and
GWSfr and TWSh
linear (GL) and
quadratic (GQl FE

basis algorithms. The

performance of the
FE forms is clearly
superior.

The benchmark problem of specific pertinence to room air motion is the close-

coupled step wall diffuser, cf., [5], which models the essence of a supply outlet.

Figure 2 summarizes the 2-D Galerkin W5fr steady state laminar solution
obtained at Re = 389 in terms of velocity vector uå distribution (a), with

ion of separation zone reattachment (xr/S) noted, and

oceeding to Re = 648, a secondary separation occurs (c), in
nt with experiment (in 3-D), however, the pressure field (d)

y a dispersive error mode in ufr. Switching to the TWSI

algorithm, with p=0.1, does not measurably alter ufi but totally
the pressure oscillations (e). Similar trends are recorded for the fully

3-D benchmark simulation, to be reported elsewhere.
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Figure 2. TWSå solutions, step-wall
diffuser, Re=390, I = 0., a) velocity,
b) pressure; Re=650, c) velocity,
d) pressure, e) pressure, B=Q.1.

The pertinent 3-D thermal. rogm air CFD experiment is for the partitionecl-room
Seometry of Neymark [6], Figure 3(a) illustrates the essentiål configuration,
constituted of opposed heated and cooled walrs with chamber þartitioncontaìning a doorway of adjustable aspect ratio. The water experiments (pr=6)
rernained laminar for 106<Grpr=Ra<109, and confirmed a naiural convection_
induced jet enters the colder room vertically at the door jamb. The symmetric
domain non-uniform mesh contains -57,000 nodes; Fig. só) is a cut-away view.
Irig. 3(c) presents the steady-state u¡' field at Ra=106, Þ=0.1, on select nodal ¡rla¡es.
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l:igure 3. TWSh simulation of partitioned-room geometry of [6], a) sketch of
problem, b) FE mesh, c) sready-state velocity fiehl, Ra = 106, Þ = 0.1.

l:igures a(a)-(d) summarize companion isotherm distributions on select vertical
¡la..es,. along with associated uå distributions. These results are in goocl
r¡tralilative agreement with experirnental data; page limitations preclucle a nrore
del.riled discussion here.
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Figure 1. Fourier amplification factor llgll and phase

velocity llvll for various CFD algorithms.
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Figure 4. TWS| simulation of partitioned-roomand temperature distributions geometly of [6), Ra=l06, velocityon stsmmetry_ (a) and select Õ-d) quarter-planes.
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ABSTRACT

llutant transmission in auditoria' Through
ibution and the removal of contaminants

of air exchange efficiency, local air change

entilation index. Situations with various

udied.

The t¡acer gas measurements were suPplemented and generalized by, numerical

simulations cärried out with the CFD co¿e-feVpLEON. The simulations have shown

i¡", l[" ãii flow partern inside this type of premises may be quite complex. The air flow

ñ; is affectËd by room g"o*.try, 
-caligl-V 

and location of heat source, aspects of

["il¿i"g materials and consìruction, turnis¡ing, the ventilation principle, supply air

temperature and surrounding climate.

A general trend from simulations of terraced premises is that the uPPer Paft of the

ocãrpied zone appears to be the most polluted area with regard to both.thermal and

atrnóspherical conta.inants. This tendency is independent of the ventilation principle

and technical layout.

INTRODUCTION

The air flow pattern within a zone can have a considerable impact on the. indoor air

quality, the tilermal comfort and the energy performance of the ventilation system'

Sto¿iéi in auditoria, carried out by the authoi, úave shown that the air flow pattern and

the pollutant transmission are affected )y many palameters. These. include room

g.orå",ry, capacity and location of heat source, building fabrics, furnishing, ventilation

irincipte,'teaiages and short ci¡cuiting, supply air temperature and surrounding climate'

Even with is difficult the

Pattern of movement ant

transport. enables th be

predicted if sufficien are

available.

The objective of this work has been to verifu and visualize the impact of parameters

affecting the air flow pattern inside auditoria with tefraced floor. The work was

accompiished by carr,vini out full scale measurements and CFD computations of the air

flow pattern and Pollutant transmission'


