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ABSTRACT

The requirement is attainment of high quality computational (CFD) solutions to
the Reynolds-averaged Navier-Stokes’ equations for buoyant and turbulent flows
in three-dimensional indoor geometries. Popular CFD theory/codes stabilize
intrinsic dispersive error via artificial diffusion methods, with resultant
compromise of genuine physical diffusion processes. A new Taylor weak
statement CFD theory, and finite element code implementation, represents a
potential significant accuracy/stability improvement for 3-dimensional buoyant
room air flow prediction. This theory and documentary validations are
summarized in this paper.

INTRODUCTION

Computational fluid dynamics (CFD) is the maturing art/science of compuler-
generation of approximate solutions to the Reynolds-averaged Navier-Stokes
(RaNS) equations. A CFD algorithm can (at best!) generate only an approximate
solution, and intrinsic dispersive error mechanisms exist to compromise
stability, hence accuracy. Further, in room air motion simulation, the "CFD
pressure” functions kinematically in enforcing mass conservation, and subtle
pressure differential errors can have profound impact on flow directionality.
These issues require very specific CFD modeling, whence any CFD algorithm
transforms the selected non-linear RaNS partial differential equation (PDE)
system into a much larger algebraic system amenable to "computing."

The Taylor weak statement (TWS) theory [1] with current generalizations [2], is
proving capable of recovering most historical CFD dissipative methods for
dispersion error control. This paper highlights this TWS theory, applied to
RaNS, and its semi-discretization via a finite element implementation of a
Galerkin weak statement. Theoretical and computational performance
validations are summarized for select 2-D benchmark and 3-D room air motion
problem specifications.

THE PROBLEM STATEMENT

A statistical manipulation yields the RaNS PDE system governing thermal room
air flows. Following nondimensionalization, and identifying the turbulent
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Reynolds number (Re!) of the turbulence closure model, the governing basic PDE
system for solution is
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along with the continuity constraint of divergence-free mean-flow velocity
vector u,'(xj, t). Additional definitions in (1)-(2) include potential temperature,
= (T - Twin)/ (Tmax-Tmin), and kinematic pressure P =p/pgo + 2k/3, where k is
turbulence kinetic energy. The dimensionless groups are Reynolds number (Re),
Archimedes number (Ar=Gr/Re2), hence the Grashoff number (Gr), and Prandl
number (Pr). A superscript "t" denotes the modeled "turbulent” counterpart.

The character of solutions to (1)-(2) depends on these groups, the distribution of
Re! and boundary conditions. Since Re>0 and Re! > 0, each isolated equation is
elliptic, hence the mean-flow state variable q {(x, t) = (u1, u2, u3, ©}T, and/or its
normal derivative, is required known all around the problem statement
boundary. The solution process is thus classic initial-boundary value, up to
enforcement of the continuity constraint that u; is divergence-free. This
differential constraint becomes enforced kinematically, via inexact CFD theories,
as a modelled action of pressure P. One construction appends a Poisson equation

A9 = V- Vil =0 &)
to (1)-(2), where superscript tilde denotes any approximation to the true velocity

u, and n is the time-step index. The solution ¢ is then manipulated into a

pressure approx1mat10n P4*1=P"-¢,,1/8At, which may then selectively be
replaced via the genuine pressure, a solution to
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Appropriate boundary conditions are required to render (3)-(4) well-posed, cf.,
Baker, et.al. [3]. Finally, a closure model to determine Re! is required.
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WEAK STATEMENT CFD ALGORITHM

A CFD algorithm for (1)-(4) generales solutions characterized by Re, Gr, I'r and

Re!, since Prf = Pr.  The CFD state variable is g(x;, 1) = {u1, u2, u3, ©; ¢, P)T, which
by partition (at the semi-colon) satisfies the PDE systems
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In (5), fj = fj(g) is the kinematic flux vector while f;” is the dissipation flux-vector
embodiment of the turbulence closure model plus natural diffusion. In (6), the

laplacian operates on g, = {¢, P}T, and s = s(4) are the respective source term.

Any CFD algorithm generates an approximation to the true solution to (5)-(6) via
a denumerable set of decisions leading to an algebraic system amenable "to
computing." A dominating dispersive error mechanism is intrinsic to this
process for (5), ultimately leading to use of "artificial diffusion” mechanisms, e.g.,
"QUICK" differencing. The Taylor weak statement theory [1]1-[2], extended to
systems (5) yields creation of the PDE companion to (5) as
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where Aj =9fj/dq is the kinematic flux vector jacobian. Thereafter, any
approximation gN(x, t) to the true solution to (6) - (7) in the continuum is
N
g0, 0 =qN (x5 = T ¥ (9 Q; () ®)
]:

where Wj(x) are assumed known functions and Qj(t) are the associated time-
dependent unknown expansion coefficients. Since gN cannot satisfy (6)-(7), the
error associated with gV is minimized by requiring the Taylor weak statement

TWS =| &) £ ¢ (gV)dt =0, Vi )
Q
be satisfied for any (all) known functions ®@i(x). If the theory-designer picks ®i(x)

and ¥;i(x) identical, a "Galerkin finite element" (FE) statement results.

Conversely, if one chooses ®(x) to be constants, then a "finite volume" (FV)
form is produced. Thereupon, the pertinent spatial semi-discretization permits
evaluation of the integrals defined in TWS, which for (7) always produces a
matrix ordinary differential equation (ODE) system of the form [4]

d(Q}

TWSH = [M]—= + (R(Q) = {0) (10)

where superscript h denotes "dlscretlzatlon," [M] and {R} are global rank square
and column matrices, and {Q} = (Q(#)} is the state variable approximation

coefficient set at the nodes of the mesh Q. Any ODE algorithm uses (10) for

time derivative evaluation; selecting the one-step 6 implicit procedure, for
example, produces the terminal algebraic matrix equation for computing as

(FQY = M) {Qrs1 - Q) + A{BIR) a1 + (1-0) (R},) = 0) (11)

where "n" denotes time step level. The discrete Galerkin weak statement for the
Poisson equation (6) directly produces the matrix system

(FQA) = [D1{Qa} - {S(Q)} = (0) (12)

where square matrix [D] is the discrete laplacian, {Q4]) is the nodal array of oh or
Ph, and {S(Q)} contains dependence on g" via solution {Q(#)} from (11).

The generic solution process for (11)-(12) is a numerical linear approximation to
the Newton iteration algorithm
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where [J] is the "jacobian" of (11)-(12). The Newton jacobian in (13) is formed
using calculus operations; thereafter, the range of quasi-Newton iterative
procedures use approximations in concert with iterative cyclings, e.g., Gauss-
Seidel, GMRES, preconditioned conjugate gradient, etc.

ACCURACY, STABILITY AND DISPERSION

The fundamental CFD decision is selection of the trial and test spaces, in defining
gN and the TWS error constraint respectively. In the semi-discrete
implementation, this is commensurate with algorithm order of accuracy, hence
asymptotic convergence under mesh refinement. Linear FE and traditional FV
algorithms are typically second-order accurate, cf., [4, Ch. 4, 6].

Algorithm stability is of greater practical significance, as related principally to
control of the third-order dispersive error mechanism. Specifically, any mesh of

measure h = Ax is incapable of resolving information of wavelength 2Ax,

yielding the characteristic, cascading 2Ax oscillatory dispersive error mode. The
non-linearity of the NS equation system amplifies this dispersion error, which is

w  typically damped
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summarizes recent [2]
phase velocity and
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performance of the
FE forms is clearly
superior.

Figure 1. Fourier amplification factor ligll and phase
velocity lIvll for various CFD algorithms.

DISCUSSION AND RESULTS

The benchmark problem of specific pertinence to room air motion is the close-
coupled step wall diffuser, cf., [5], which models the essence of a supply outlet.
Figure 2 summarizes the 2-D Galerkin WSh steady state laminar solution
obtained at Re = 389 in terms of velocity vector u” distribution (a), with
experimental location of separation zone reattachment (x;/S) noted, and
pressure (b). In proceeding to Re = 648, a secondary separation occurs (c), in
qualitative agreement with experiment (in 3-D), however, the pressure field (d)
is quite polluted by a dispersive error mode in uh. Switching to the TWSh

dissipative algorithm, with B=0.1, does not measurably alter uh but totally

annihilates the pressure oscillations (e). Similar trends are recorded for the fully

3-D benchmark simulation, to be reported elsewhere.
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d) pressure, e) pressure, $=0.1. 15

The pertinent 3-D thermal room air CFD experiment is for the partitioned-room
geometry of Neymark [6]. Figure 3(a) illustrates the essential configuration
constituted of opposed heated and cooled walls with chamber partitior{
containing a doorway of adjustable aspect ratio. The water experiments (Pr=6)
remained laminar for 106<GrPr=Ra<10%, and confirmed a natural convection-
1nducgd jet enters the colder room vertically at the door jamb. The symmetric
domain non-uniform mesh contains ~57,000 nodes; Fig. 3(b) is a cut-away view.
Fig. 3(c) presents the steady-state u field at Ra=106, B=0.1, on select nodal planes.

Figure 3. TWSH simulation of partitioned-room geometry of [6], a) sketch of
problem, b) FE mesh, c) steady-state velocity field, Ra = 106, B=01.

Figures 4(a)-(d) S}Jmmarize companion isotherm distributions on select vertical
planes, along with associated u distributions. These results are in good

\|\ml.1[atwe. agreement with experimental data; page limitations preclude a more
detailed discussion here.
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ABSTRACT

This paper deals with air flow pattern and pollutant transmission in auditoria. Through
different tracer gas techniques the air distribution and the removal of contaminants
inside auditoria have been classified in terms of air exchange efficiency, local air change
index, ventilation effectiveness and local ventilation index. Situations with various
occupancy and ventilation rate have been studied.

The tracer gas measurements were supplemented and generalized by numerical
simulations carried out with the CFD code KAMELEON. The simulations have shown
that the air flow pattern inside this type of premises may be quite complex. The air flow
pattern is affected by room geometry, capacity and location of heat source, aspects of
building materials and construction, furnishing, the ventilation principle, supply air
temperature and surrounding climate.

A general trend from simulations of terraced premises is that the upper part of the
occupied zone appears to be the most polluted area with regard to both thermal and
atmospherical contaminants. This tendency is independent of the ventilation principle

and technical layout.
INTRODUCTION

The air flow pattern within a zone can have a considerable impact on the indoor air
quality, the thermal comfort and the energy performance of the ventilation system.
Studies in auditoria, carried out by the author, have shown that the air flow pattern and
the pollutant transmission are affected by many parameters. These include room
geometry, capacity and location of heat source, building fabrics, furnishing, ventilation
principle, leakages and short circuiting, supply air temperature and surrounding climate.

Even with a sophisticated measuring concept, it is difficult to consider in detail the
pattern of the air flow, or the influence from air movement on thermal and pollutant
transport. Computational fluid dynamics (CFD) enables the air flow pattern to be
predicted within a zone with a wealth of details, if sufficient computer resources are

available.

The objective of this work has been to verify and visualize the impact of parameters
affecting the air flow pattern inside auditoria with terraced floor. The work was
accomplished by carrying out full scale measurements and CFD computations of the air
flow pattern and pollutant transmission.
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