

DEPARTMENT OF ARCHITECTURE AND URBAN PLANNING RESEARCH GROUP BUILDING PHYSICS

A Set of Health, Comfort and Energy Performance

Indicators for (Smart) Ventilation Systems

Webinar AIVC – 20 June 2024 – Dr. De Jonge Klaas

Holistic Performance Assessment of Residential Ventilation Systems

Klaas De Jonge - Promotor Prof. Jelle Laverge

Chapter 6 - Assessment metrics

De Jonge, Klaas. 'Holistic Performance Assessment of Residential Ventilation Systems'. PhD dissertation, Ghent University, 2023. http://hdl.handle.net/1854/LU-01H0MTHJVNBH83NT709B3KGK37.

Desired Indoor Air Quality

"Desired Indoor Air Quality"

*Durier, François, Rémi Carrié, and Max H. Sherman. 'What Is Smart Ventilation?' *Ventilation Information Paper*, no. 38 (March 2018). <u>https://www.aivc.org/resource/vip-38-what-smart-ventilation</u>.

Desired Indoor Air Quality

"Desired Indoor Air Quality"

≠ "minimum" or "maximum" indoor air quality

Desired Indoor Air Quality

"Desired Indoor Air Quality"

 $\hat{\Gamma}$

The goal of any ventilation system is:

- Provide and maintain the desired indoor air quality to the occupants.
- If a system succeeds in providing this level of performance (assuming correct boundary conditions), it is consequently a 'good ventilation system' with regards to IAQ.

Set of indicators

IAQ - Checklist

Health: Acute Limit Values Health: LCRi Health: Dynamic DALYs MAX Health: Mold growth indicator Comfort: RH Comfort: Perceived IAQ

Relative performance

Health Indicator: Dynamic DALYs Energy use indicator Health-equivalent energy efficiency

Set of indicators

IAQ - Checklist

Health: Acute Limit Values

Health: LCRi Health: Dynamic DALYs MAX Health: Mold growth indicator Comfort: RH Comfort: Perceived IAQ

Relative performance

Health Indicator: Dynamic DALYs Energy use indicator Health-equivalent energy efficiency

<u>Health</u>

Short-term health effects

- Fast negative physiological reaction due to exposure above a certain level
- Limit values define desired air quality
- e.g. AEGL-1, OEL

Long-term health effects

- Health outcomes that occur because of prolonged exposure
- Rooted in epidemiological research and obtained through statistical correlations. Assumes that the dose of exposure is the key driver for the health outcome
- Existing Limit or guidelines values target limiting dose. They do **not** define desired air quality
- Harm metric

<u>Health</u>

Short-term health effects

- Fast negative physiological reaction due to exposure above a certain level
- Limit values define desired air quality
- e.g. AEGL-1, OEL

Long-term health effects

- Health outcomes that occur because of prolonged exposure
- Rooted in epidemiological research and obtained through statistical correlations. Assumes that the dose of exposure is the key driver for the health outcome
- Existing Limit or guidelines values target limiting dose. They do <u>not</u> define desired air quality
- Harm metric

Health Long-term health effects

Disability-Adjusted Life Years (lost) = Metric of harm

Health Long-term health effects

Disability-Adjusted Life years (lost) = Metric of harm

Health Long-term health effects

More on this:

INDOOR AIR

ORIGINAL ARTICLE 🔂 Full Access

Time-resolved dynamic disability adjusted life-years estimation

Klaas De Jonge 🔀 Jelle Laverge

First published: 18 November 2022 | https://doi.org/10.1111/ina.13149

Go here for SFX

E SECTIONS

👮 PDF 🔧 TOOLS < SHARE

Abstract

The quantification of how healthy the indoor air is, is a complex issue comprising of a large number of contaminants of various sources. The health implication of exposure to each of the contaminant deemed of importance can be expressed using Disability Adjusted Life Years (DALYs). The sum of all DALYs indicates how harmful the indoor air

K. De Jonge and J. Laverge, "Time-resolved dynamic disability adjusted life-years estimation," *Indoor Air*, vol. 32, no. 11, p. e13149, 2022, doi: <u>10.1111/ina.13149</u>.

Set of indicators

IAQ - Checklist

Health: Acute Limit Values

Health: LCRi Health: Dynamic DALYs MAX Health: Mold growth indicator

Comfort: RH Comfort: Perceived IAQ

Relative performance

Health Indicator: Dynamic DALYs Energy use indicator Health-equivalent energy efficiency

<u>Comfort</u>

CR1752:1998: 'Normally few problems occur when the relative humidity is between 30 % and 70 %'

Requirement

Exposure to indoor air with an RH which is too low or too high, can cause discomfort. A ventilation system should be able to keep this aspect in range most of the time.

The desired RH comfort, for typical occupancy:

- "most of the time" is <u>90% of the exposure time at home</u>.
- 5% can be below the range
- 5% can be above the range.

OR

The desired RH comfort indicators are:

- 95%-percentile RH exposure < 70% RH
- 5%-percentile RH exposure > 30% RH

Bio-effluents

Bio-effluent emission of people can cause dissatisfaction with regards to perceived indoor air quality.

Requirement

For the assessment of a residential ventilation system, providing an indoor air quality which is perceived as comfortable most of the time is a minimum requirement of the system.

The desired perceived comfort, for typical occupancy:

- On average more then 80% of people should feel comfortable.
- Only 5% of the time, more than 50% of people may experience discomfort.

OR

The perceived comfort indicator is thus (PMV-PPD approach):

- 50 percentile of PD (Median) <20%
- 95 percentile of PD <50%

Set of indicators

IAQ - Checklist

Health: Acute Limit Values

Health: LCRi Health: Dynamic DALYs MAX Health: Mold growth indicator

Comfort: RH Comfort: Perceived IAQ

Relative performance

Health Indicator: Dynamic DALYs Energy use indicator

Health-equivalent energy efficiency

PRIORITY SUBSTANCES	WHO	CALE	IAQ Decree	IARC	EU-index	CONY	LOGUE
Acetaldehyde		Х	Х		Х		Х
Acrolein						Х	Х
Benzene	X	X	X	X	X	X	X
1,3 Butadiene							Х
1,4 Dichlorobenzene							Х
Formaldehyde	X	X	X	X	X	X	X
Carbon monoxide	Х		Х		Х		
Limonene		X			X		
Naphthalene	X			X	X		X
Ozone			X				
PM2.5			X			Х	Х
Radon	Х			X		х	
Molds						Х	
Nitrogen dioxide	Х		X		X	Х	Х
Styrene		Х	Х	Х	Х		
Tetrachloroethylene	Х	Х	X	Х		Х	
Toluene		X	X		X		
Trichloroethylene	Х	Х	Х	Х		Х	
Xvlene		Х					

System			
C1			
C2			
С3	Short-term health effects		
C4		•	
D5			
D6			
D7			
D8	Perceived comfort		
Cref_10		•	
Cref_50	RH discomfort	X	
Cref_100		• •	
Dref_10			
Dref_50			
Dref_100			

Conclusions

- A curated and linked set of indicators in performance based assessment of IAQ management strategies
- Limitation of 1 metric can be overcome with another
- Harm-based health metric & Limit values
- Optimisation for Health and Energy within Comfort boundary

Room for improvement:

- Smells/odour from certain activities (e.g. unintended backflow of toilet air)
- Structural safety constraints for RH (wooden building)
- Acoustical constraints >> method now relies on best-practice installation
- Thermal comfort >> modelling approach keeps temperature within comfort for now

FACULTY OF ENGINEERING

Klaas De Jonge

Postdoctoral researcher

RESEARCH GROUP BUILDING PHYSICS

E Klaas.DeJonge@ugent.be

- f Universiteit Gent
- X @ugent
- @ugent
- in Ghent University

www.ugent.be

UNIVERSITÉ SAVOIE MONT BLANC

TOWARDS PERFORMANCE-BASED APPROACHES FOR SMART RESIDENTIAL VENTILATION A ROBUST METHODOLOGY FOR RANKING THE SYSTEMS

AND DECISION-MAKING

AIVC Webinar – New developments in design and characterisation of energy-efficient ventilation systems 20 June 2024 <u>Dr. Baptiste Poirier</u> baptiste.poirier@cerema.fr

Dr. Gaëlle Guyot Pr. Monika Woloszyn

Presentation based on paper for :

ard AIVC -11th TightVent & 9th venticool Conference October 4-5, 2023 Aalborg University, Copenhagen, Denmari

Innovative ventilation systems easier to install for retrofitting dwellings

AIVC Webinar - 20/06/2024

Samuel Caillou Buildwise - Belgium

The playground of the research: a social housing district in Brussels

The houses have a long history and are being progressively renovated

IAQ in existing houses is very poor

The main challenges of installing ventilation

Needed space forDuctwork

Ventilation unit

Invasive works

- Natural supply requires windows modifications
- Extensive finishing works inside are necessary

Simplified or incomplete systems: are they efficient ?

Cost !

Main advantages of the "D cascade"

Easier to install

 No ductwork toward the living room Reduced costs

- Smaller ventilation unit (reduced flowrate)
- Less ductwork

Efficient system

- IAQ as good as classic D system
- Heat recovery possible
- Reduced flowrate: demand control less necessary
- No influence of the airtightness of the building envelope Applicable in many dwelling configurations

∋W Buildwise

Control options of the "C hallways" Higher total design flowrate! • Demand Control Ventilation (DCV) is necessary • Higher impact and potential for control Local Control • Bedrooms CO2 • Bathroom Relative humidity (RH) • Toilets Presence detection or equivalent • Kitchen CO2 (+RH)

I AIV3	memt	oers								European Ventilation
	AERECO	Airios	a ldes		Altrea:	() eama	BELIMO	BOSCH Invested for life	BRINK Air for Life	
	CLIVET	V DAIKIN	DUCO	ebmpapst	<u>Elektrovent</u>	ELTA GROUP	Fachwarband Geblude-Klima e.V.	FET É		
	France Air?	1000	Hoval	Simote for the	MAICO	Changes for the Better		NICOTRA Gebhardt	Stowarzyszenie Polska Wentyłacja *	
	punker ^ở	Creating healthy spaces	रा	rosenberg 🔞	ruck	SIEMENS	MIC AIR HANDLING	Soler&Palau Vesturien Group	STIEBEL EUROP Liter i de Geldines	
	torin-sifan The Pather of Cherry	Uniclima	Sector Industrie area	OV VORTICE	VOSTERMANS	WITT& SOHN	W	always the best climate zehnoot	ZIEHL-ABEGG	

VENTILATION PERFORMANCE ASSESSMENT TOOL	Ventilation Performance Assessment Tool Indoor Air Performance Label calculation	
Calculation method for assessing the air exchange performance of residential mechanical ventilation units		
	User manual	
Documentation related to the Excel Calculation Models version becomer 2022		
	VPA-tool was developed by VHK and UGhent for and in cooperation with EVIA	Van Holsteiin en l
Client: European Ventilation Industry Association (EVIA)	Brussels, December 2022	
Prepared by		
VHK (R.C.A. van Holtsteip and W. Li) UGent (J. Lawerge)	Prepared by: VHK (R. van Holsteijn, W. Li), UGhent (J. Laverge) and EVIA (Y. Lambert, L van Bohemen)	UNIVERSITY
Van Koldzije en er Kervas Br (VMR) Retreferienses 35 (KBL ZDS HG Deft, The Netherland: span alf. Zd	Van Habitage and Kanna BV (2011) Brannenerge Wei SS 2011 Will Judie	

2. Methodology

Assessment Method

Defining room types and ventilation strategy (2)

Vet or Extract spaces: E	ES	(kitchen, bathroom,	toilet,	laundry	room)
--------------------------	----	---------------------	---------	---------	-------

Pollutants: Moisture, odour, building material emissions, emissions from human
activitiesExposure: Inhabitants during presence / building to high humidity levels

Occupancy time: Short

Reference ventilation strategy

Air-exchange: During presence, extraction of sufficient air (incl. moisture/odour) is key
(supply is adjusted accordingly)
During absence, extraction of air until humidity levels are below
threshold values; basic ventilation rates after that.

7

2. Methodology Assessment Method Defining technical system parameters Ventilation System Type (VST) and associated air-exchange provisions in ES and HS Type of MDE/MDS fan and type of NDS (natural direct supply)-grids used in the VST Installed maximum and minimum airflow capacity (limiting factor for achievable air exchange rates) Type of operation / controls (affects system's ability to achieve requested air-exchanges at the right time in the right place) Type of dwelling: number and type of ES and HS, surface of HS, airtightness

2. Methodology

Assessment Method

Principle for calculating occurring **AER** : AER = qv;inst * Pqv;inst * fctrl

(1)

qv:inst = Installed min. and max. ventilation capacity in ES and HS

Pqv;inst = The probability that installed ventilation capacity in ES &HS is actually achieved.

This is calculated, taking into account the following parameters:

- Driving force (natural versus mechanical)
- Number and position of internal doors (i.e. open or closed, applicable to certain VSTs)
- Airtightness of the dwelling and location of leakages (applicable to certain VSTs)
- Duct leakages RVU (reducing intended mech. supply/exhaust airflows)
- Filter compensation BVU (reducing supply airflow due to clogging filters, acc EN13142)
- Internal leakage BVU (reducing share of air that is supplied or extracted, acc. EN13142)
- Airflow sensitivity 'v' (sensitivity RVU for pressure variations over façade, acc. EN13141-8)
- Indoor/outdoor airtightness 'qvio' of (local) RVU (acc. EN13141-8)

Assessi	ment Method					
Principle	for calculating Air E	xchange Performan	ce AEP : 🏼	AEP = AER	AERref	(1)
AERref =	The reference air exc periods of presence	change rate; a value is and absence based of AFBref for HS	determin n EN 16798	ed for ES a 3-1, Annex	nd HS and B, Categor	for y II
	ALNIEJ		bathroom	kitchen	toilet	
	During presence	0,47 l/s/m²	20 l/s	10 l/s	10 l/s	
	During absence	0,13 l/s/m ²	4 l/s	2 I/s	2 l/s	
		Alson A CD to an I such a set	for poriod	s of proces	nco and ah	sonco

3. Input/output sheet

VST 5	EXHAUST SPACES (ES)	HABITABLE SPACES (HS)	1					> ALTER	ONLY TH	E YE	LLOW CELLS! <		
SUPPLY PROVISIONS	MIS	MDS]										
EXHAUST PROVISIONS	MDE	MIE											
. Dwelling airtightness	5			airtightness	parameter	n50	value:	2,00	air changes p	er hour			
. Specify number of Ex	haust (ES) and Habitable	e Spaces (HS)		open_kitchen	bathroom	toilet	utility	other	total ES		habitable	spaces	
				number	number	number	number	number	number		number	total surface are	a in m ²
			[1	1	1	0	0	3		3	66,00	
Select BVU-type				BVU-type	1	CENTR.BIDIR.V	ENT.UNIT VAF	NABLE FLOWR	ATE FIXED FLOW	/RATE R/	ATIO ES & HS		
				BVU Ffc	20%	Measured filte	r compensati	on factor acco	rding to Annex I	DEN 131	42; if not known a default of 20% is used		
				BVU Fil	6%	Measured frac	tion of exhau:	st air recircula	ting in supply a	r, meas	ured acc. to chamber tracer gas method EN131	142; if not known a default (of 6% is used
Specify maximum MD	DE (= MDS) capacity to b	pe installed	r		N	IDE capacity pe	r ES type				installed MDS capacity HS (with cle	an filter and not corrected	d for Fil)
			l	open_kitchen	bathroom	toilet	utility	other	total MDE		habitable	spaces	
			-	1/5	1/5	1/5	I/S	I/S	1/5		1/5	1/5/112	
			l	50,00	15,00	10,00			55,00		55,00	0,65	
Specify minimum MD	E (= MDS) capacity			6,00	3,00	2,00			11,00		11.00	0,17	
			ı	20,0%	Ratio min/max	o apacity must b	e idential when	MDE-type 1 is	selected		,		
MIS- and MIE capacit	ty as % of MDE and MD	S acc. Good Practice				MIS capac	ity				MIE cap	acity	
			[100%	100%	100%			100%		1009	%	
Specify type of contro	ol from Exhaust and Hab	oitable Spaces				Controls	ES				Control	s HS	
			[MDE kitch.	MDE bathr.	MDE toilet	MDE utility	MDE-other			MDS habitab	le spaces	
			[cntrl type	cntrl type	cntrl type	cntrl type	cntrl type			% of HS area	cntrl type	
			[RH-local	RH-local	PIR					100%	no contro	l i i i i i i i i i i i i i i i i i i i
RESULTS													
obability that reque	sted air exch. rate occu	ırs in indiv. spaces				AEP ES					AEP H	HS	
				open_kitchen	bathroom	toilet	utility	other	average ES		average HS		
			presence	95%	95%	95%			95%		32%	prese	nce
			absence	133%	133%	95%			130%		119%	abser	ice
			overall AEP	98%	98%	94%			98%		32%	overa	II AEP
verage air exchange r	rate (AER) over total dv	velling @ default occu	pation								average AER DWELLING		
		-									dm ³ /s m ³ /h ach	dm ³ /s/m ² A _{tot}	
											21 75 0,31	0,23	

Table 8. Parameters of reference dwelling

Total dwellings surface (heated space)	92,40 m ²
Total internal volume	240 m ³
Total surface of habitable spaces	66 m ²
Number of Exhaust Spaces	3 : kitchen, bathroom toilet
Type of kitchen	Open kitchen (combined with dining room)
Number of habitable spaces	3
Airtightness dwelling	N50 = 2.00

VST 5	EXHAUST SPACES (ES)	HABITABLE SPACES (HS)]					> ALTER	ONLY TH	E YEL	LOW CELLS! <		
SUPPLY PROVISIONS	MIS	MDS	1										
EXHAUST PROVISIONS	MDE	MIE	1										
													EV/A
1. Dwelling airtightness				airtightness	parameter	n50	value:	2,00	air changes pe	r hour			European Ventilation Industry
							-						Association
2. Specify number of Exh	haust (ES) and Habitable	Spaces (HS)		open_kitchen	bathroom	toilet	utility	other	total ES		habitable	spaces	
				number	number	number	number	number	number		number	total sur	lace area in m ²
				1	1	1	0	0	3		3		66,00
3. Select BVU-type				BVU-type	1	CENTR.BIDIR.VE	NT.UNIT VARI	ABLE FLOWRAT	E FIXED FLOWR	ATE RAT	10 ES & HS		
				BVU Ffc	5%		r compensatio	n factor accord	ling to Annex D B	IN 1314	2; if not known a default value of 20% is used		
				BVU Fil	1%	Measured fract	tion of exhaust	air recirculati	ng in supply air,	measu	ed acc. to chamber tracer gas method EN13142;	if not known a def	ault of 6% is used
Specify maximum MD	DE (= MDS) capacity to b	e installed				IDE capacity pe	r ES type				installed MDS capacity HS (with clear	in filter and not o	prrected for Fil)
				open_kitchen	bathroom	toilet	utility	other	total MDE		habitable	spaces	
				l/s	l/s	l/s	l/s	l/s	l/s		l/s		/s/m2
				20,00	10,00	10,00			40,00		40,00		0,61
Specify minimum MDI	E (= MDS) capacity			4,00	2,00	2,00			8,00		8,00		0,12
Ratio min/max capacity must	t be idential when MDE-type	1 is selected		20,0%	20,0%	20,0%							
6. MIS- and MIE capacity	y as % of MDE and MDS	acc. Good Practice				MIS capac	ity		<u> </u>		MIE cap	ncity	
				100%	100%	100%			100%		1009		
Specify type of control	l from Exhaust and Habi	itable Spaces				Controls 8	S				Controls	HS	
				MDE kitch.	MDE bathr.	MDE toilet	MDE utility	MDE-other			MDS habitab	le spaces	
				cntrl type	cntrl type	cntrl type	cntrl type	cntri type	<u> </u>		% of HS area	ci	tri type
				RH-centr.	RH-centr.	RH-centr.					85%	00	2-local
											15%	no	control
RESULTS													
Probability that reques	sted air exch. rate occu	rs in indiv. spaces				AEP ES					AEP HS		
				open_kitchen	bathroom	toilet	utility	other	average ES		average HS		
			presence	84%	84%	84%			84%		96%		presence
			absence	279%	279%	279%			279%		68%		absence
			overall AEP	102%	102%	102%			102%		94%		overall AEP
Average air exchange p	erformance (AEP) and	air exchange rate (AER)	over total o	twelling @ defau	It occupation	1					combined AEP DWELLING		
				0 0 0 000							95%		
											average AEK DWELLING		1
											dm:/s m'/h ach	dm ⁻ /s/m [*] A _{tot}	
											25 90 0,38	0,27	

When selecting the controls for HS, there is a possibility to choose the location and the type of sensor.

Controls HS								
% of HS area	cntrl type	% of HS area	cntrl type	% MDE				
100%	manual	60%	CO2-local	100%				
		40%	no control					

The % of HS area it affects is determined by this table :

Sensor in

Living room	Х	Х	Х			
Master Bedroom	Х	Х		Х	Х	
Children's bedroom	Х			Х		Х
% of HS	100%	85%	60%	40%	25%	15%

			Calculation based on average European d
Supplier's name or trade mark *			
Supplier's name or trade mark			
Supplier's model identifier *			
Supplier's model identifier			
VPAT score			
A.		~	
Sensor(s)	Yes	No	Sensors
Relative Humidity	0	0	
CO2	0	0	<u>م</u> الم
Odour (TVOC)	0	0	Relative CO ₂ Odour Presence
Presence (PIR)	0	0	humidity PIR
People counting sensor (Bidirectional laser)	0	0	Airflow Control
Airflow Control			
Central		~	
Filtration			Central Zonal
		~	

