

System Configurations – How Air Cleaners Are Used in Buildings

- Stand-Alone Units: Portable air cleaners placed in rooms to clean the air around people.
- Personal Ventilation Systems: Small air cleaning units that deliver clean air directly to a person's breathing zone.
- Beam-Based Systems (Chilled Beams): Air cleaners built into cooling beams that clean the air while providing cooling.
- Primary Air Supply: Air cleaners placed at the main air supply point to clean outdoor air before it enters the building.

```
AALBORG
UNIVERSITY
```

3

Key Technologies

- Activated Carbon Filters: Absorb gases and odors, effective for VOCs.
- Photocatalytic Oxidation (PCO): Uses UV light and a catalyst to break down pollutants.
- Air Ion Generators: Release ions to neutralize particles and gases.
- UV-Based Air Purification: Kills viruses and bacteria.
- Hybrid Systems: Combine multiple technologies for better performance.

AALBORG

Key Findings from Annex 78

- Gas-phase air cleaning technologies can reduce heating energy demand while maintaining IAQ
- Recirculation rates of 20%, 40%, and 60% in offices with HRV systems led to 8%, 16%, and 24% heating energy savings (Nourozi et al., 2022)
- Residential buildings with HRV showed minimal impact from air cleaning; without HRV, 3% savings per 20% recirculation increase
- Air cleaners integrated into active chilled beams yielded primary energy savings of 26% (Afshari et al., 2023)
- Energy savings observed across different climates, e.g., Copenhagen (9 kWh/m²/year) and Tokyo (5 kWh/m²/year) (Bogatu et al., 2024)

Cas-phase Air Cleaning Energy 24% Image Air Cleaning En

5

AALBORG UNIVERSITY

Technology Readiness Assessment

- Preliminary assessment conducted in Annex 78 and 87
- Technology shows potential in different climates (e.g., Sweden, Tokyo)
- CADR/kWh metric emphasized for evaluation

AALBORG UNIVERSITY

Field and Simulation Studies

- · Conduct field evaluations and case studies
- Test protocols and energy savings
 assessments
- Develop adaptive control strategies for dynamic response

AALBORG UNIVERSITY

13

Relation to EBC Strategic Plan

- Supports EBC Strategic Plan 2024-2029
- Step change and disruptive impact:
 - Integration of air cleaning into HVAC for energy reduction
 - CADR/kWh as a performance benchmark
 - Holistic approach to lifecycle and environmental impact

Required Expertise

- Advanced gas-phase air cleaning technologies
- Lifecycle assessment experts
- · Regulatory framework analysts
- Data analytics and AI professionals
- · Cross-disciplinary integration experts

15

AALBORG UNIVERSITY

Collaborating Organizations

- Technical universities (e.g., AAU, DTU, KTH)
- Industry partners (HVAC manufacturers, technology developers)
- Government agencies and policymakers
- NGOs and sustainability certification bodies

AALBORG UNIVERSITY

Energy implication of using gas-phase air cleaners in residential & office buildings

Introduction and background

- Ventilation systems are important for maintaining a healthy and comfortable indoor environment.
- In cold climates, ventilation systems contribute to **approximately 30% of building heat losses**.
- Indoor emissions and outdoor pollutants affect indoor air quality and need to be controlled.
- **Gas-phase air cleaning** as an extension of ventilation can help maintain acceptable indoor air quality while reducing **energy use**.

Investigated parameters

- Heating demand of a ventilated building
- Indoor TVOC level (with 60% capturing efficiency)
- Indoor CO₂ level as a monitoring parameter
- Possibility of air recirculation when air cleaner is integrated.

Simulation case

- Newly constructed or renovated buildings
- Older buildings without heat recovery ventilation
- Residential and office cases with various ACH

Energy simulation using TRNSYS

Supply Fan

FRIDAY, FEBRUARY 21, 2025

SASAN SADRIZADEH (SSAD@KTH.SE)

Type33c

Air polluta	nt	ТУОС				CO ₂		
Source	Outdoor	Occupants	Interior furnishing		Outdoor	Occupants		
Value	µgr.m ⁻³	mgr.h ⁻¹ .person ⁻¹	µgr.m ⁻³ h ⁻¹		mgr.m ⁻³	gr.h-1.person-1		
	110	6.3	120		720	120		
	In	door and outd	oor emissi	ion rate	es			
Location	Reference	Reference			TVOC concentration µg.m ⁻³			
Europe		Report EUR 14449 EN. 1992			Comfort range < 300			
	Report EUR 144				Discomfort range < 25000			
					Toxic range > 25000			
Finland	Finnish Society	Finnish Society of IAQ and Climate. 2000			Individual indoor climate < 200			
Finiand	Finnish Society C				Satisfactory indoor climate < 600			
		Federal Environment Agency of Germany			Hygienically safe < 1000			
Germany	Federal Environr				Hygienically noticeable < 3000			
					Hygienically alarming < 10000			
Germany	Seifert B.	Seifert B.			300			
	Guideline va	lues for indo		Conc	entration			
	Guideline va	indes for medo			cintration	L		

Residential building (0.45 ACH)

Ventilation with heat recovery:

- > The recirculation effect on heating demand is negligible!
- ➢ Air cleaner implementation might not be that effective!

Ventilation <u>without</u> heat recovery:

- **The recirculation** effect on heating demand is small!
- ➢ Air cleaner implementation might reduce building heating demand!

HRV: Heat Recovery Ventilation

FBC

Office building (2.1 ACH)

- > The recirculation effect on heating demand is notable compared to the residential buildings!
- > This is the case for both with and without heat recovery!
- Air cleaner implementation <u>is</u> effective!

Thus ACH is an important parameter that needs to be considered.

 $[{}^{\mu g}_{m}/{}^{3}]$

IVOC concentration

25

200

150

100

50

Jan

Feb

Mar

Apr

Residential building: Impact of air recirculation on TVOC concentration ($<500 \ \mu g/m^3$)

TVOC concentration is within the acceptable range

600

400

30

200

100

May

 $[\epsilon^m/_{BH}]$.

With air recirculation (and air cleaner)

Recirculation does not result in increased TVOC level

7/10 7/21

Residential building: Impact of air recirculation and ACH on TVOC & CO_2 concentration

TVOC concentration with 0 and 50% air recirculation

- High ACH (>0.5) maintains TVOC concentration within an acceptable range, regardless of recirculation level
- Thus, adding air cleaner and recirculation is beneficial to reduce building heating demand

Co2 concentration with 0 and 50% air recirculation

Recirculation % and ACH do not changes CO_2 level since the main CO_2 source is the outdoor air.

FRIDAY, FEBRUARY 21, 2025

SASAN SADRIZADEH (SSAD@KTH.SE)

Conclusion:

- This study examines the effect of gas-phase air cleaners on building heating demand.
- The study also explores indoor **concentrations of TVOC and CO₂** when gas-phase air cleaners are used.
- Different parameters were also discussed, such as ACH, air recirculation, ventilation, and occupancy schedule on indoor TVOC and CO₂ levels.
- Increasing recirculation rate reduced heating demand in the office building more than in residential.
- 60% recirculation rate reduced heating demand by 9% in residential and 24% in the office building.
- Integrating gas-phase air cleaner and increasing recirculation rate during rush hours of mornings and evenings kept TVOC and CO₂ concentrations acceptable.
- Indoor CO₂ concentration value was affected less than TVOC's by increasing the recirculation rate.
- Higher ACH minimizes the impact of recirculation rate on TVOC and CO₂ levels.

Sasan Sadrizadeh ssad@kth.se

FRIDAY, FEBRUARY 21, 2025

SASAN SADRIZADEH (SSAD@KTH.SE)

6. september 2023

1

DTU Sustain

Professor Bjarne W. Olesen and Dragos-Ioan Bogatu International Centre for Indoor Environment and Energy – ICIEE, DTU SUSTAIN, Technical University of Denmark

Gas phase air cleaning effects on ventilation energy use and indicators for energy performance

CONCEPT OF SUPPLEMENTING VENTILATION BY GAS PHASE AIR CLEANING.

- Clean Air Delivery Rate (CADR)
 - CADR = $\varepsilon_{PAQ} \cdot Q_{AP} \cdot (3,6/V)$
 - where:
 - ϵ_{clean} or ϵ_{PAQ} is the air cleaning efficiency
 - Q_{AP} is the air flow through the air cleaner, 1/s;
 - v is the volume of the room, m³.
- Air Cleaning Efficiency
 - $\epsilon_{\text{clean}} = 100(C_{\text{U}} C_{\text{D}})/C_{\text{D}}$

where:

DTU Sustain

- $-~\epsilon_{clean}$ is the air cleaning efficiency
- C_U is the gas concentration before air cleaner Q_{AP} is the ventilation rate with air cleaner, l/s;
- Higher Air Quality Category

 $\varepsilon_{PAQ} = Q_o / Q_{AP} \cdot (PAQ / PAQ_{AP} - 1) \cdot 100$

- where:

- $-\epsilon_{PAQ}$ is the air cleaning efficiency for perceived air quality;
- Q_o is the ventilation rate without air cleaner, l/s;
- C_D is the gas concentration after air cleaner. PAQ is the perceived air quality without the air cleaner, decipol;
 - PAQAP is the perceived air quality without the air cleaner, decipol

5

6. september 2023

Indicator for comparing the efficiency of the AHU and stand-alone air cleaner

$$CAE = \frac{CADR}{Energy use}$$
 [L/s per kWh]

Amount of air, CADR in L/s, and energy use for heating, cooling, and AUX or GPAC

