Order Papers ## Table of contents 8NZ, UK ced in any form or by any , recording or by any sion in writing from the itish Library UK | Preface | | iz | |----------|--|--| | Thread . | Cooling in buildings Historical development Buildings and energy consumption for cooling Current technology of air-conditioning systems Current technology for natural ventilation in buildings Conclusions References | 1
12
18
26
29 | | 2 | Passive cooling of buildings Benefits of passive cooling Passive cooling strategies Cooling potential – limitations Epilogue References | 35
35
37
52
53 | | 3 | The Mediterranean climate Geographical characteristics Solar radiation The air temperature Relative humidity Characteristics of the wind Cloudiness Sunshine Meteorological measures to represent environmental stress Cooling degree days Thom's discomfort index References Additional reading | 56
56
58
61
67
68
69
72
73
78
81
81 | | 4 | Microclimate Climate and microclimate Topography as climate modifier Urban forms as climate modifiers Climate and design requirements References | 84
84
84
89
91 | vi | 5 | Urban design
Stages of urban design
Building design
References | 95
95
112
126 | |---|--|---| | 6 | Thermal comfort The influencing parameters Psychrometrics Thermal equilibrium of the human body Comfort indices Prediction of thermal comfort References Appendix A Appendix B | 129
129
133
134
138
146
156
158
166 | | 7 | Cooling load of buildings Factors affecting the cooling load Methods for calculating the cooling load in buildings Calculation of monthly averaged cooling load A simplified manual method for calculating cooling loads References | 171
172
175
176
179
184 | | 3 | Heat attenuation The role of thermal mass Heat transfer mechanisms Parameters influencing thermal mass effectiveness Calculations of thermal mass effectiveness Case studies References Appendix A Appendix B | 185
185
190
192
196
202
207
212
212 | |) | Natural ventilation Natural ventilation Empirical/simplified methods for estimating ventilation rates in a single-zone building Natural convection heat and mass transfer through large internal openings Multizone modelling Night ventilation References | 220
220
236
247
261
266
271 | | URBAN DESIGN | vi | |--|--| | Appendix A Appendix B Appendix C Appendix D | 27:
283
298
301 | | 10 Solar control Description of solar geometry Prediction of sun's position Graphical design tools Solar control review Solar control issues Solar control techniques References Further reading Appendix A Appendix B | 307
307
309
312
328
329
330
343
345
345 | | Ground cooling Ground cooling by direct contact Earth-to-air heat exchangers Conclusions References Appendix A Appendix B | 360
360
367
391
392
394 | | Physics of evaporative cooling Evaporative cooling systems Performance of evaporative cooling devices Conclusions References Appendix | 404
404
408
415
420
421
422 | | Physical principles of radiative cooling Radiative cooling systems Modelling the flat-plate radiative cooler Potential of radiative cooling Problems related to radiative cooling Conclusions References Further reading Appendix A Appendix B | 424
424
432
437
438
446
447
447
448
448 | | 14 Simplified methods for passive cooling applications | 455 | | Cooling requirements of air-conditioned (a/c) buildings | 455 | |--|-----| | Cooling requirements of naturally ventilated (n/v) buildings | 457 | | Cooling requirements of buildings equipped with earth-to-air heat exchangers | | | (buried pipes) | 457 | | Cooling requirements of buildings using night-ventilation techniques | 459 | | Cooling requirements of buildings using night-ventilation techniques and | | | buried pipes | 461 | | How to calculate the cooling degree hours | 463 | | References | 465 | | Biographies of the authors | | | Index | | The increase in household have helped air condition cant increase in build conditioning equipment years and are now work while the annual sales of the market jumped to or The specific energy climate, the type of buil specific energy consum Denmark. Greece. The of between 15 to 110 climate, Greek office boffices for heating, vent Clearly, the problem of alone. It may be just a building type and construction. The impact of the us lem for almost all south to build additional pow average cost of electricity Environmental problem ants used in convention mizing the use of HVA of indoor air quality assinto account. Recent studies are relatively high Alternative passive of the building envelope a temperature heat sink, techniques have alread industrial circles. Passiv portant energy, environ The study and applie nary process. It is impoarchitectural design; it s