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Abstract 
The laminar flow for a backwards facing step is studied. This work was initially 

part of the work presented in [l]. In that work low-Reynolds number effects was stud
ied, and the plan was also to include laminar flow. However, it turned out that when the 
numerical predictions of the laminar flow (Re= 118) was compared to the experiments 
of Restivo [2), we found a large discrepancy. We believe that there is something wrong 
in that experimental investigation. To support that conclusion, we present in this re
port prediction of other backward facing flow configurations, where we show that our 
predictions agree well with experimental data. 

1 Configuration 

The configuration is shown in Fig. 1. The Reynolds number is defined as 

Re= Ubulkh 
v 

The boundary conditions at all walls are U V 0. At the outlet we have used zero 
streamwise gradient for U, i.e. 

&U =0 
&x 

which, from continuity, gives V = 0. A parabolic inlet profile is used 

U = 6Ubulkii(I - tJ) 
_ y- (H - h) 
y= ---

h 

(1) 

•This work was carried out during the author's stay at Dept. of Building Technology and Structural Engi
neering, Aalborg University in Autumn 1997. 
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Figure 1: Configuration. 

e�������������� 

8f • •  

XR 71-H - h 6 
5 

3 io• 10' 
Re 

... . 

. .  , . ., 

Figure 2: Experimental reattachment length XR as a fuaction of inlet Reynolds number 
Re [2]. 
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Figure 3: Contours of stream function. Re = 195. h/ H = 0.516 
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Figure 4: Contours of stream function. Re = 50. h/H = 1/4. a) Hybrid scheme, 80 x 40 
cells. b) QUICK scheme, 160 x 80 cells. 

2 Backward-Facing Flow with h/ H = 0.516 

Armaly et al. [3] have presented an experimental investigation of backward-facing flow. 
The ratio of the inlet height and the step is larger (h/ H = 0.516) than in the Restivo 
configuration. They report that the flow is laminar up to Re = 600. For 600 < Re < 3000 
the flow is transitional, and for higher Re number the flow is fully turbulent. Even if the 
flow is laminar for Re < 600, they found it to be three-dimensional for 200 < Re < 3000. 

This flow has been computed using a 160 x 80 equidistant mesh and a QUICK scheme. 
The extent of the computation domain in the x direction is lOH. The streamlines for Re= 
195 are shown in Fig. 3 and the predicted re-attachment point is located at XR = 4.3 which 
is in agreement with experiments [3] (XR,exp = 4.3) and other computations (see Ref. [4]). 
In the present computations a small recirculation bubble was found along the upper wall 
for 4 < x/ H < 5.2; it was very thin however (only one or two cells). 

3 Backward-Facing Flow with h/ H = 1/4 

In Fig. 4 the contours of the predicted streamlines are shown. Two equidistant meshes 
have been used. A 80 x 40 mesh using the Hybrid scheme gives XR/ H = 2.55 and a 160 x 80 
mesh employing QUICK gives XR/ H = 2.47. This agrees well with the predicted value 

reported by Thangam and Knight [5] who report XR/ H '.::::'. 2.5. 
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4 Backward-Facing Flow with h/H = 1;6 

For this configuration the grids are equidistant in the x directi:m. In the y direction cells 
with a cor_stant spacing dy1 is used for the inlet, and dy2 is .1sed below the inlet. Seven and 

fourteen cells are used to cover the inlet for the coarse and fine mesh, respectively. 
In Fig. 5 the streamline contours are shown for Re= 50. The exten: of the the recircula

tion regio::i is similar to that in Fig. 4. When the Re numbu is increased, the recirculation 

region grc·ws larger, Figs 6 and 7. 
For Rt = 50 the difference between the predictions obtained with the different grids is 

small. For Re = 100 the size of the predicted recirculation bubble near the ceiling is larger 
with the finer grid. The size of the bubble below the inlet, however, does not differ that 

much. Far Re = 118 the extent of the computation domain is increased to l'LH. As c:m 
be seen from Fig. 7 the size of the recirculation bubble near the ceili::ig and of the bubble 
near the floor increases slightly, compared to Re = 100. In l"ig. 9 the sensitivity to the inlet 
velocity profile is investigated. A parabolic inlet profile is c:omp3.red to the experimentally 
measured profile (see Fig. 8), and as can be seen from Fig. =>the difference is rather small. 

Using the fine grid the predicted length of the recirculation region in Figs. 7 and 9 

(xR/ H = 3.92 and 3. 76, respectively) is considerably shorter than that reported by Restivo [2, 

6], whose experimental value xR/h is between 30 and 45, i.e 6 < xR/(H - h) < 9 (5 < 
XR/ H) < 7.5). The value shown in Fig. 2 (taken from Ref. nD is x/(H - h) = 6.42. 

The predicted velocity profiles are compared with expEriments in Fig. 11. They agree 
fairly well up to x/h = 15, but then there is a large discrnpar_cy. It can be seen that at 

x / h = 20 a recirculation bubble appears near the ceiling .n the predictions, which is not 
present ir:. the experiments. Such a separation bubble is ir deed present in the predictions 
in Fig. 3 and also in the measurements [3]. 

In Fig_ 10 the predicted streamlines for Re = 160 are presented. A slightly longc�r 
computatons domain was used (14H). No convergence WLS obtained with QUICK on the 
fine mesh, which probably indicates that the flow starts b get transitional and/or three
dimensional. As can be seen both the recirculation bubbl·� at the flo·Jr and at the ceiling 
gets slightly larger. 

5 Conclusions 

We have computed laminar flow in a backward-facing step fer different conjgurations. 

Good agreement with experiments is obtained for h/ H = 0.51'3. Good agreement is also 

obtained ·.vith other predictions in the literature for h/H = 1/4. However, for h/H = 1/6 
the agreement with experiments of Restivo [2] is very poor. Thus we believe that the exper
iments are in error. One reason could be that the configun.tion in the experimental setup 
was too small. The streamwise extent was 9H and the preCicted extent of the recirculation 
bubble near the ceiling is approximately 6H at Re = 118 and 7 H at Re = 100. 
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Figure 5: Contours of stream function. Re = 50. h/ H = 1/6. a) Hybrid scheme, 80 x 42 
cells. b) QUICK scheme, 160 x 84 cells. 
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Figure 6: Contours of stream function. Re = 100. h/ H = 1/6. a) Hybrid scheme, 80 x 42 
cells. b) QUICK scheme, 160 x 84 cells. 
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Figure 7: Contours of stream function. Re = 118. h/ H = 1/6. a) Hybrid scheme, 80 x 42 
cells. b) QUICK scheme, 160 x 84 cells. 
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Figure 8: Inlet profiles. Sol� lines: prescribed inlet U profiles i the predictions; markers: 
experime:its. Re = 118. h/ H = 1/6. 160 x 84 cells. a) Interpolatefl prof.le from experiments. 

b) Parabolic profile. 
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Figure 9: Contours of stream function. Re= 118, h/ H = l; 6, Hybrid Echeme, 160 x 84 cells. 
a) Prescribed inlet profiles according to experiments (see Fig. 8 i;t). b) ?arabolic inlet profile 

(see Fig. 3 b). 
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Figure 10: Contours of stream function. Re = 160, h/ H = 1/6.J Hybrid scheme. a) 85 x 42 
cells. b) 169 x 84 cells. 

6 



0.8 

y 0.6 

H 0.4 

0.2 

-8.s 

o .. 

y 0.6 

H 0.4 

Q.2 

-8.s 

0.8 

y 0.6 

H OA 

0.2 

..s:2 

x/h. = 5 
0 0.5 

x/h = 15 
0 05 

0 0.2 0.4 
u 

0.8 

0.6 

O.• 

0.2 

15 -8:s 

0.8 

0.6 

0.4 

0.2 

1.5 -8.s 0 

0 

0.6 

0.4 

0.2 

0.6 -8.1 0 

x/h = 10 
0.5 1.5 

.. 

z/h = 20 

0.1 0.2 
u 

0.5 

x/h = 45 
0.3 0.4 

Figure 11: U velocity profiles. QUICK scheme, 160 x 84 cells. Prescribed inlet profiles 
according to experiments (see Fig. 8 a). Solid lines: predictions; markers: experiments [2] 
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