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An Energy And Carbon Dioxide Emission Scenario For The UK Housing 
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This paper describes the development of a model which can be used to 
explore the technical feasibility and policy implications of attempting to 
achieve 60 - 90% reductions in the C02 emissions from the UK housing 
stock by the middle of the next century. Reductions of this order are 
likely to be required across the industrialised countries in order to 
stabilise the atmospheric C02 concentration and global climate. In order 
to be able to investigate this problem, a highly disaggregated physically 
based energy and carbon dioxide model of the UK housing stock has 
been developed. This model covers both the demand and supply side, 
and is being used to develop three scenarios of energy use and C02 
emissions; namely: a Business-as-Usual scenario; a Technologically 
Advanced scenario; and, a Radical scenario. 

Preliminary results indicate that under a Business-as-Usual scenario 
savings of around 165 PJ of delivered energy (a 9% reduction) and 59 
million tonnes of C02 (a 33% reduction) are possible in the domestic 
sector by the year 2050, based on 1991 figures. The model also 
suggests that, at least in the domestic sector, the UK may meet both the 
Kyoto target and the earlier self-imposed 20% reduction target by the 
year 2010, with measures that appear collectively consistent with a 
continuation of current trends and policies. However, the more 
demanding long term goals associated with climate stabilisation are 
unlikely to be achieved without significant changes to current UK 
policy, and the implementation of technical measures that go beyond 
what is currently seen as economically viable or practical. 

Introduction 

There is widespread agreement within the scientific community that changes to the global 
climate are taking place, primarily due to an increase in anthropogenic C02 emissions [ 1]. 
Recent estimates suggest that reductions in C02 emissions of between 60 to 90% will be 
required by the middle of the next century, if C02 concentrations are to be stabilised at current 
levels, and disruption to the global climate system is to be minimised [ 1,2,3]. An attempt to 
address this problem was made at the World Climate Conference at Kyoto, where agreement 
was reached to reduce emissions of the six main greenhouse gases by an average of 5.2% 
based on 1990 levels, between 2008 and 2012. The scale of the reductions agreed varies 
between countries, with Europe, the USA and Japan contributing 8%, 7% and 6% respectively 
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[4]. The UK's contribution to .the European target is a reduction in emissions of 12.5 % [5]. ,It 
is likely that this will supersede the earlier self-imposed reduction of 20 %, below 1990 levels, 
by the year 201V [6]. In the UK, the Kyoto target will be achieved within the built 
environment mainly by promoting the efficient use of energy, whilst within the energy supply 
sector there is an intention to deliver 10% of the UK's electricity demand from renewables by . 
2010 [5]. 

The domestic sector contributes substantially to national C02 emissions with emissions of 149 
million tonnes of C02 in 1996, some 30% of the UK's total emissions [7]. While the UK 
housing stock is characterised by long physical lifetimes and slow stock turnover, energy use 
in this sector has been much more stable than in the transport and commercial sectors, while 
C02 emissions have actually been declining for some years. It would therefore seem unlikely 
that the UK will be able to achieve large overall reductions in national C02 emissions without 
savings in the domestic sector being at least as large as those in the economy as a whole. 

A number of practical case studies suggest that large reductions in C02 emissions in new and 
existing housing are technically feasible [8,9, 10, 11]. However, achieving such large reductions 
across the whole UK housing stock will be technically demanding, and if they are to be 
achieved, significant changes will be required to current UK policy. It is within this context 
that the present model has been developed. 

The Physically Based Energy Model 

In order to investigate whether such large reductions in the C02 emissions from the UK 
housing stock are technically feasible, scenario based modelling techniques have been used to 
develop a highly disaggregated, physically based "bottom-up" energy and carbon dioxide 
model of the UK housing stock. The structure of the developed model is shown in Figure 1. 

The model has been developed around a modified worksheet version of the Building Research 
Establishment's Domestic Energy Model (BREDEM), Version 9.53 [12]. This emphasis has 
been chosen because the fabric of the housing stock is characterised by very long physical 
lifetimes. The thermal envelope of the UK housing stock has a much slower tum-over than 
domestic space and water heating systems, the major components of the energy supply and 
distribution sector, and is significantly slower than the tum-over of domestic lights and 
appliances. 

Transparency within the model has been preserved by adopting a parsimonious approach to 
detail. Thus, the model incorporates just two notional building types, which are deemed to be 
representative of pre- and post-1991 construction respectively. The physical properties of the 
main elements of these notional dwellings are averages which take into account the effects of 
demolition, new construction, refurbishment, heating system replacement and so on. This 
approach is justified on the grounds that variations in the energy performance and emissions 
associated with the various dwelling types are dwarfed by the reductions in energy use and 
C02 emissions that are required across the stock as a whole. It is the average performance of a 
"wall", "roof' and "window" across the UK housing stock, rather than the geometries and 
energy demands of particular house types, that dominate the picture in the long term. While 
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this approach is likely to be more revealing in the long term, in the short term it leads to 
discrepancies when compared to the output of more detailed models. We do not consider 
these to detract from the main purpose of the exercise. 

A more detailed description of the model and the techniques used to develop it can be found 
within Johnston [ 13] and Johnston et al. [ 14]. 

The Business-As-Usual Scenario 

At present, only the Business-as-Usual (BAU) scenario has been comprehensively developed 
and evaluated. The remainder of this paper examines the results and insights obtained from this 
scenario. The BAU scenario assumes that current rates of uptake and improvements in the 
energy efficiency of the UK housing stock continue at levels which have been seen to occur in 
the past. This scenario has been developed using information from relatively uncontentious 
external data sources where possible. Such sources include: population projections from the 
Office for National Statistics [15]; numbers of households from the Government Statistical 
Service [ 16]; and projections of future energy demand for lights and appliances from the 
Domestic Equipment and Carbon Dioxide Emissions (DECADE) team at the University of 
Oxford [ 17, 18]. Other information has been generated internally on the basis of the authors' 
own informed judgement, to provide a detailed technical projection of the UK housing stock 
to the year 2050. 

It is impossible to present the whole of the BAU scenario here, but the nature of the scenario 
can be gauged from the following brief descriptions: 

Thermal envelope improvements existing housing: 
• 80% of existing cavity walls insulated by 2050. 
• 10% of existing solid walls insulated by 2050. 
• All existing single glazed windows replaced by 2020. 
• 50% of first generation double glazed windows replaced with second generation glazing 

by 2050. 

Thermal envelope improvements, new housing: 
• Building Regulations wall U values fall to 0.3 W/m2K by 2010, to 0.20 W/m2K by 2020 

and to 0.10 W/m2K by 2030. 
• Window U values fall to 2.0 W/m2K by 2010 and 1.0 W/m2K by 2020. 
• Air leakage rates are introduced into the Building Regulations in 2005 at 10 ac/h @ SOPa 

and fall to 5 ac/h @ 50Pa by 2025. 
• 45% of new housing fitted with MVHR systems by 2050. 

Space heating improvements in all housing: 
• All dwellings will have a space heating system installed with an average efficiency of 90% 

by 2031. 
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Lights and appliances: 

• Ownership of lights and appliances is assumed to saturate around 2020. Appliance 
efficiencies are assumed to continue to rise, with a resulting overall reduction in energy use 
for the period to 2050. 

Table 1 summarises the impact of these measures on elemental U values averaged over all pre­
and post- 1991 dwellings, whilst Figure 2 graphically represents the impact of these measures 
on the heat loss of pre- and post- 1991 dwellings. Where appropriate, historical data obtained 
from the latest version of the Building Research Establishment's Domestic Energy Fact Files 
(7] has been included. 

The history of the last 50 years has shown that changes to the carbon intensity of energy 
supply are at least as important as those changes that have taken place in end-use systems such 
as dwellings. This observation applies both to combustible fuels, with natural gas progressively 
and now almost completely replacing more carbon intensive fuels such as oil and coal, and to 
electricity. A major simplification incorporated within the model is the assumption that the UK 
housing stock utilises just two forms of delivered energy over the period of the scenario - gas 
and electricity. In the case of natural gas, it has been assumed that there is no reduction in 
carbon intensity over the period to 2050. In principle, reductions could be achieved, for 
example, by introducing a significant component ofbiogas into UK gas supply, but we do not 
feel that such an assumption is appropriate for a BAU scenario. 

Historical data on the carbon intensities of electricity generation have been obtained from Pout 
[19] (see Figure 3). These data form part of a much longer-term trend toward lower carbon 
intensities for electricity generation in the UK. It is possible that the carbon intensity will rise 
for a short period in the early years of the 2111. century, as first Magnox and then AGR nuclear 
power stations are decommissioned [20]. There are however many technical options for 
reducing carbon intensity over the next 50 years, including more intensive development of 
renewables, further expansion of gas fired combined cycle generation, and the introduction of 
fuel cells. Given the existence - indeed the proliferation - of these technical options, and the 
ever increasing political awareness of the problem of climate change, we consider it 
inconceivable that historical trends will not continue in the medium to long tenn. We have 
therefore assumed a continued gentle decline in the carbon intensity of electricity (see 
Figure 3). 

Results And Discussion 

Figures 4 and 5 show the delivered energy use and C02 emissions attributable to the UK 
housing stock under the BAU scenario. These results have been compared with historical data 
obtained from the BRE's Domestic Energy Fact File [7], and recent projections undertaken by 
Shorrock and Dunster [21]. The "Reference" scenario developed by Shorrock and Dunster 
represents what is likely to happen if current trends continue. These comparisons suggest t� 
the scenario is indeed representative of business-as-usual, at least in the short to medium term. 

The scenario shows delivered energy consumption in the UK housin� stock re�ai�: 
relatively constant from 1991 up until around 2010, whilst the corresponding C02 enussio 
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dtoP substantially, by almost 25% over the same period. Delivered energy use emerges from a 
smmber of oppodug trends. Dwelling envelope, heating systems, and lights & electrical 

appli"nces all become more efficient over the period, which tends to reduce delivered energy 
use. lnt�mal temperatures1, appliance ownership and the total number of households all 
increase. driving sectoral delivered energy use up. Our scenario shows these opposing factors 

10 be in balance until 2025, with a slow reduction in energy use thereafter. Small changes in 

our assumptions move the curve either way. 

ln the case of carbon emissions, the perfonnance of energy supply systems - in our BAU 
scenario, the electricity supply industry - introduces a further layer of complexity. The steady 
decline in carbon intensity of electricity that we have assumed, together with the modest (9%) 
reduction in delivered energy use, results in a steady decline in sectoral carbon emissions over 
the whole of the modelling period. Carbon emissions in 2050 are 33% lower than in 1991. The 

COz emission trajectory· presented in Figure 5 has been compared against the UK's Kyoto 
target and the earlier self-imposed target of a 20% reduction by 2010. The results suggest that 
both of these targets can be achieved in the domestic sector, under our scenario assumptions. 
Conversely, the results also suggest that the much larger reductions in carbon emissions 
needed to stabilise the atmosphere and the global climate will require the pursuit of a more 
ndical scenario. This perception will be most strongly held by those who consider our BAU 
tcenario to be already technically optimistic. 

Conclusion 

The authors have developed a disaggregated physically based energy and C02 model of the 
UK housing stock, which is capable of exploring the implications and feasibility of attempting 
to achieve large reductions in the C02 emissions attributable to this sector. Our exercise is the 
first recent attempt to project the perfonnance of this sector so far into the future - other 
studies have been truncated in the first or second decade of the next century. It is also the first 
to be predicated on the assumption of the need for reductions in emissions that go beyond 
those which can be achieved by the application of measures which are currently micro-

• economically viable. 
, 

We can perhaps be criticised for projecting so far into the future, although studies begun in the 
· 1970s (22,23] set a precedent for 50 year scenarios. The long physical time constants 
lllociated with housing and energy supply, mean that the problem of climate change can only 
be considered over this sort of period. The alternative, of not doing the modelling at all, is not 
one that we are comfortable with. The purpose of this exercise is not to predict the future, but 
IO �cture the way in which we think about it, and to begin to make it possible to formulate 
llbonal and considered responses to the problems that it poses. 1;.· 

L ·  

,. Altbou .. gh BREDEM 9.53 incorporates a simple saturation mechanism, this depends only on dwelling heat Plramc1c�, and docs not include the effects of income or energy price. Moreover, the saturation �u"'. (just below l 9°C) appears too low in view of temperatures recorded in energy efficient dwellings. -�I includes all three effects. and at h igh incomes and in very well insulated dwellings. saturates at -- 21°c. · 
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This paper presents the first of three scenarios. Our discussion of this scenario sh<:1ws how 
sectoral energy use and carbon emissions emerge from the interaction of a number of factors 
and trends, with the growth in the number of households, the rise in internal temperatures and 
the proliferation of domestic appliances being offset by better insulation, more efficient energy 
conversion and reduced carbon intensity of electricity. Over the period to 2010 it is likely that 
the reduction in the carbon intensity of electricity will be an important factor, but this is then 
expected to saturate, and thereafter a number of factors affecting delivered energy become 
increasingly important. Over the whole period, no single dominant factor emerges. 

Preliminary results indicate that under a Business-as-Usual scenario, the domestic C02 
emissions will be reduced by almost 25% by the year 2010. This suggests that both the Kyoto 
and the UK Government self-imposed C02 emissions targets will be achieved, by 
implementing the measures identified. By 2050, savings of around 165 PJ of delivered energy 
(a 9°/o reduction) and 59 million tonnes of C02 (a 33% reduction) are also possible. Although 
the Business-as-Usual scenario suggests that it is possible to achieve the targets set for 2010, 
significant progress beyond 2010 would appear to require implementation of measures that go 
substantially beyond what would be expected on the basis of current trends. Such measures 
are incorporated within our Technically Advanced and Radical scenarios [14], which will be 
the subject of future papers. 

References 

1. HOUGHTON, J. T. et al. (eds) (1996) Climate Change 1995: The Science of Climate 
Change. Cambridge University Press, Cambridge. 

2. KRAUSE, F. BACH, W. and KOONEY, J. (1989) Energy Policy in the Greenhouse. Final 
Report of the International Project for Sustainable Energy Paths (IPSEP). El Cerrito, 
California, USA, IP SEP. 

3. DEUTSCHER BUNDESTAG (1991) Protecting the Earth: A Status Report with 
Recommendations for a New Energy Policy. Third Report of the Enquete Commission oil 
Preventative Measures to Protect the Earth's Atmosphere. Bonn, Germany. 

4. DETR (1998) Opportunities for Change: Consultation Paper on a UK Strategy fo1 
Sustainable Construction. Department of the Environment, Transport and the Regions 
London, HMSO. 

5. DETR (1998) UK Climate Change Programme: A Consultation Paper. Department of th( 
Environment, Transport and the Regions. London, HMSO. 

6. DETR (1998) Climate Change: Impacts in the UK. Department of the Environment 
Transport and the Regions. London, HMSO. 

7. SHORROCK, L. D. and WALTERS, G. A. (1998) Domestic Energy Fact File. BRI 
Report 354. Garston, Watford, Building Research Establishment. 

8. BELL, M. and LOWE, R. (1997) Energy Efficiency in Existing Housing. In Proceeding! 
of the 2nd International Conference on Buildings and the Environment, June 9-12, 1997 
Paris. 

9. OLIVIER, D. and WILLOUGHBY, J. (1996) Review of Ultra-low-energy Homes: P 
Series of UK and Overseas Profiles. General Information Report 38, Department of th< 
Environment, London. 

416 



CIBSE NATIONAL CONFERENCE 1999 

10. OLIVIER, D. and WILLOUGHBY, J. (1996) Review of Ultra-low-energy Homes: Ten 
UK Profiles in Detail. General lnfonnation Report 39, Department of the Environment, 
London. 

1 1. FEIST,W. JAKEL, M. STURM, H. 1. WERNER, J. (1994) Luftung im Passivhaus. 
Passivhaus-bericht Nr 8, Germany, Darmstadt, lnstitut Wohnen und Umwelt. 

12. BRE (1994) The Government's Standard Assessment Procedure for Energy Rating of 
Dwellings. Garston, Watford, Building Research Establishment. 

13. JOHNSTON, D. (1998) A Method of Estimating the Futtrre Energy and Carbon Dioxide 
Emissions Associated with the UK Housing Stock. In Proceedings of Detail Design in 
Architecttrre 2, Leeds Metropolitan University, Leeds. 

14. JOHNSTON, D. LOWE, R. BELL, M. & STURGES, J. (1999) A Physically Based Energy 
and Carbon Dioxide Emission Model of the UK Housing Stock. In Pr�ngs of the 
International Sustainable Development Research Conference, 25-26 March · 1999, Leeds 
University, Leeds. . =,. _, -

15. GSO ( 1996) National Population Projections: 1994-based. Office for National Statistics, 
SeriesPP2 no. 20. Government Statistical Service. London, HMSO. 

16. DoE (1995) Projections of Households in England to 2016. Department of the 
Environment. London, HMSO. 

17. BOARDMAN, B. FAVIS-MORTLOCK, D. HINNELLS, M. LANE, K. B. MILNE, G. 
PALMER, J. SMALL, E. STRANG, V. & WADE, J. ( 1995) DECADE: Domestic 
Equipment and Carbon Dioxide Emissions. Second Y e:ar Report 1995, Energy and 
Environment Programme, Environmental Change Unit, University of Oxford. 

18. BOARDMAN, B. FAVIS-MORTLOCK, D. HINNELLS, M. LANE, K. B. MILNE, G. 
SMALL, E. STRANG, V. & WADE, J. (1995) DECADE: Domestic Equipment and 
Carbon Dioxide Emissions. First Year Report 1994, Energy and Environment Programme, 
Environmental Change Unit, University of Oxford. 

19. POUT, C. (1994) Relating C02 Emissions to End-uses of Energy in the UK. In 
Proceedings of the 1st International Conference on Buildings and the Environment, May 
16-20, 1994, Building Research Establishment, Garston, Watford. 

20. DTI (1995) Energy Projections for the UK. Energy Paper 65, Department of Trade and 
Industry, London, HMSO. 

21. SHORROCK, L. D. and DUNSTER, J. E. (1997) The Physically-based Model 
BREHOMES and its Use in Deriving Scenarios for the Energy Use and Carbon Dioxide 
Emissions of the UK Housing Stock. Energy Policy, Vol. 25, No. 12, pp. 1027-1037. 

22. LEACH, G. et al. (1979) A L9W Energy Strategy for the United Kingdom. London, 
Science Reviews Ltd. 

23. OLIVIER, D. MIALL, H. NECTOUX, F. and OPPERMAN, M. (1983) Energy Efficient 
Futures: Opening the Solar Option. London, Earth Resources Research Ltd. 

417 



DATA 
SOIJRCF.S 

\ 
\ . 

POl'UU.TIOft, 
HOUIDIOLDI, 

HOIJIEHOU> SIZ.E 

DWEU.ING 
DIMEl'lllO!'ll 

OCCIJPANCY 
DITAILI 

CIBSE NATIONAL CONFE R ENCE 1999 

MODDllD 
VlllSIONM 
llllEDIMUJ 

TOTAL llNIRCY UQVllllMINT 
PU.NOMINAL 

DWIU.ll'fG 
�CY 
llll'PLY 

IYITDll 

Figure 1. Structure of the physically based energy and carbon dioxide model of the UK 
housing stock 
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Figure 2. Specific heat loss of the UK housing stock 
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Figure 3. Carbon dioxide emission factors for electricity for the BAU scenario. 
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Figure 4. Total delivered energy use of the UK housing stock 
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Figure 5. Total C02 emissions attributable to the UK housing stock 

Element 
External wall 
Ground floor 
Roof 
Glazing 
External door 

1.10 0.80 
0.55 0.51 
0.43 0.30 
3.93 2.04 
3.70 2.10 

3.30 
3.30 

Table 1. Predicted average elemental U-values for the UK housing stock. 
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Soft-computing models for naturally ventilated buildings 

A E Gegov, GS Virk, D Azzi, BP Haynes, K I  Alkadhimi 
Department of EEE, University of Portsmouth, Portsmouth POI 3DJ 

ltlrodUCtlon 

In this study, a mixed mode building, namely the Portland Building at the University 
of Portsmouth is considered. It combines both Natural Ventilation and conventional 
Heating Ventilating and Air Conditioning systems to maintain the internal comfort. 
The paper presents the development of Soft Computing models to predict the internal 
temperature in one of the offic.es using information from neighbouring rooms, 
corridor and the outside. To derive this model, the so called Adaptive Neuro Fuzzy 
Inference System method is used. This is a well established Soft Computing method 
using Fuzzy Logic for the modelling framework and Neural Networks to adapt the 
model parameters. The fuzzy model is of the Takagi-Sugeno type with linguistic if­
then rules in the antecedent part and linear algebraic equations in the consequent part. 
Regression Delay and Proportional Difference model structures are investigated which 
are taken from classical control theory and extended in the paper for the purpose of 
fuzzy modelling on the basis of sensor readings. 

AIVC 12,524 

IMercst in naturally ventilated buildings is growing because they consume less energy to maintain acceptable indoor 
condhions for occupants in comparison to their equivalent air conditioned counterparts. In addition, their usage 
NtUlll in a lower level of environmental pollution. The authors have been developing empirical operational 
.. tcaics for buildings using a model-based philosophy. The essence of this philosophy is to make the decisions for 
-.C Building Management Systems controls on model predictions rather than on current sensor readings. However, 
for the methods to work well, the models need to be good which is not a trivial task because their performance is 
•ifacantly affected by climatic and occupancy effects which are strongly stochastic in nature and extremely 
4'1naalt lo quantify. 

Allbouah conventional parametric models yield good prediction accuracy, the fact that they require specialist 
Dowlcdge al the identification stage makes their utilisation on a wide scale difficult. Normally, the models have to 
.. ldaptable for different operating regions throughout the year through self-tuning or by using multiple models. 
...

.. 
Computing

. 
methods offer an alternative approach and the present paper introduces the concepts and describes 

aplementahon on a full-scale facility. 

:. Computing 
_
is a heuristic methodology which has received considerable interest in recent years and bas shown ..,_ �cessf�I m many areas such as modelling, control, fault diagnosis and detection, and pattern recognition. It is .. on the implementation of d�ffere�t ap�roaches su�h as F� Logic, Neural Networ�s, Genetic Algori�s 

Al OChen [ 4 J. Each of these techmques 1s suited for solving specific types of problems. In this respect, Fuzzy Logic ..::;:•ful fo� knowledge-based modelling and reasoning using expert knowledge, Neural Networks are well - -or lcam1�g-b�sed adaptation, while Genetic Algorithms are efficient for evolutionary-based optimisation. In 
911111 -�nderlymg 1de� of Soft �omputing is to use. these heuristic approaches in co�bination with �ac� other as 

_. 
th other cl�ss1c�I techmques, rather than usmg each of them separately. In this sense, the mam aim of the pl'elentcd here is to mvestigate the applicability of Soft Computing methods to the built sector. 

=�r ioted out t
.
hat Fuzzy Logic, Neural Networks and Genetic Algorithms appeared and have developed .. -: ;r a long

. �eno? of time. As such, they were known under the name of Intelligent Techniques. The reason 
�te

e lenn mtelhgent' was the analogy with some similar heuristic capabilities of human beings, e.g. 
�tasoni �g, self l�arning, etc. In this way, Intelligent Techniques were also contrasted to the so-called 
...._ 1 th!echniques which were based on precise mathematical computations within fundamental systematic 

· n 15 respect, the term 'soft' (approximate) was chosen as an antonym to the 'hard' (precise) computing, 
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typical for most Conventional Techniques. It was not until a decade ago, when the co�operative idea of Soft 
Computing was promoted so that flexible and powerful solutions could be produced. These solutions became 
feasible as a result of the utilisation of the advantages of Intelligent and Conventional Techniques in combination. 
More specifically, Intelligent Techniques turned out to be more adequate to the inherent uncertainty in many real 
plants while Conventional Techniques gave the tools for enriching the heuristic nature oflntelligent Techniques in a 
more systematic direction, thus gradually transforming the original notion of Soft Computing from a diversity of 
empirical approaches into a well defined powerfuJ methodology able to address generic problems. 

Proactive control pltylosophy 

The work proposed here is concerned with the efficient control of the internal climate in office buildings and the aim 
is to develop good predictive models which will allow a proactive control strategy to be produced. In other words, 
instead of applying a control action only on the basis of the current sensor readings, it is desirable to make use of the 
system inertia and thus to predict these readings over a certain time interval so that a sensible predictive strategy can 
be realised. The main advantage of such a proactive strategy lies in the possibility to apply heating and cooling 
control efforts more efficiently as a result of which state variables are better controlled, with smaller overshoots and 
undershoots. This, on its tum, leads to decreased energy consumptions and reduced pollution of the environment. 
However, to obtain predictive models for these buildings is not easy because they are affected by climatic and 
occupancy effects which are characterised by complex and uncertain processes. 

The notion of the proactive control strategy is illustrated in Figure l. In this case, the control action at the current 
time instant k is computed not only on the basis of the measurements at k, k-1, k-2, etc, but also by taking into 
account the model predictions at future time instants k+J, k+2, etc. Such a control strategy may be applied for any 
discrete time increment. 

Clearly, such a strategy can only perform well if the model predictions are accurate and hence effort is needed t 
generate good quality models in a cost effective manner. In this respect, some investigations have recently been 
carried out in the built sector using separate Intelligent and/or Conventional Techniques but not the Soft Computing 
methodology as a whole [5], [6], [9], (IO]. For this reason, the potential of Soft Computing as a generic modelling 
approach is well worth exploring. It is expected that it will be able to account for the existing uncertainty in offici; 
buildings caused by different unknown stochastic factors and disturbances. 

Theoretical back�round 

The s�called Adaptive Neuro Fuzzy Inference System method is used in the paper for predictive modelling o. 
internal parameters in office buildings. This method has gained significant importance recently and has also beer 
implemented in the Fuzzy Toolbox of the MATLAB software environment. The Adaptive Neuro Fuzzy Inferenci 
System method is a typical Soft Computing approach using Fuzzy Logic for building the initial model and Neura 
Networks for adaptation of the model parameters (3]. The method is based on a Takagi-Sugeno fuzzy model whicl 
has received considerable attention recently because of its suitability for processing information from input-outpu 
measurements. This is the case in Building Management Systems where the main on-line infonnation can b 
obtained from sensor readings connected to the system rather than from expert knowledge as these systems ar· 
usually coupled multivariable ones [2], [4). Another advantage of the Takagi-Sugeno fuzzy model is its capability t• 
approximate non-linear input-output mappings by a number of locally linearised models. 

The Takagi-Sugeno fuzzy model consists of linguistic if-then rules in the antecedent part and linear algebrai 
equations in the consequent part. There are two types of parameters in this model: non-linear (in the membershi 
functions in the antecedent part) and linear (in the algebraic equations in the consequent part) which are explained i 
more details further in this section. The task of the fuzzy model is to determine the initial values of both types c 
parameters on the basis of the input-output data. There are different methods for this purpose but the one that is mo� 
often used with the Adaptive Neuro Fuzzy Inference System is based on the idea of subtractive clustering, i.e. b 
assuming that each data point is a potential cluster centre and gradually finding the final clustering. The task of tl­
neural adaptation is to adjust the model parameters in order to obtain a better fit to the measured data. There are al 
different methods for this purpose but the one that is most often used with the Adaptive Neuro Fuzzy Inferem 
System is based on the idea of back-propagation, i.e. by iterative propagating of the error (the difference between H 
real and the modelled plant output) from the consequent to the antecedent part of the fuzzy rules until a desirt 
accuracy is achieved or a pre-specified number of iterations is reached. The purpose of back-propagation is to reduc 
the error as much as possible although sometimes this can not be achieved because of divergency during ti 
iterations. 
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The Takagi-Sugeno fuzzy model for a system with two rules, two inputs (u,, u1) and one output (y) is presented by 
Equation (/). The linguistic labels (membership functions) of the inputs are denoted by A1, B1, i=l,2 and their 
parameters are the non-linear antecedent parameters. The coefficients a1, b1, i=J,3 are the linear consequent 
parameters used for the computation of the output. 

!fut is At and u2 is A2 then y = at.ut + a2.u2 + a3 
!fut is B1 and u2 is B2 then y = b1.ut + b2.u2 + b3 

(1) 

Equation(/) represents a static Takagi-Su.geno fuzzy model which does not contain the time argument in the input 
and the output variables. However, in order to predict the temperature, the time argument should be included in the 
equation, i.e. the model must be a dynamic one. In this respect, two types of dynamic models are investigated in the 
paper, namely Regression Delay and Proportional Difference. Examples of such models are represented by 
Equations (2) and (3), respectively. 

If Yt-t is At and Yt.2 is A2 and ut,k-t is A3 and ut,t.2 is A4 and u2.t.2 is A5 (2) 
then Yt = at·Yt-1 + ai·Yt-2 + aJ.ul.k-t + a4.U1,t-1 + a.s.Uz,t-2 + a6 

If Yt-t is At and DYt-t is A2 and ut,k-t is A3 and Dui.t-t is A4 (3) 
then Yt = at·Yt-t + ai.DYt-2 + a3.ut.1i-t + a4.Du2.1i-t + a.s 

where DY1i-t = Y1i-t - Y1i-2, Du2,1i-1 = U2.1i-1 - U2,1i-2 

It can be seen that Equation (2) contains two auto regressive terms of the output y, two regressive terms of the input 
u1 and one delay term for of the input u1• As opposed to this, Equation (3) contains one proportional and one 
derivative term of the output y, one proportional term of the input u1 and one derivative term of the input"�· For 
simplicity purposes, each of the equations includes only one rule, but in general the number of rules is higher. More 
specifically, it is equal to the number of the linearised submodels applicable to the respective local regions of the 
whole operating range. 

The adaptation of the fuzzy model by a neural network is implemented by a procedure in two phases, namely the 
forward and backward phases. In each phase, one set of the parameters (antecedent or consequent) is kept constant 
while the other set is adapted. 

Experimental results 

This section presents results obtained with the Adaptive Neuro Fuzzy Inference System method for modelling the air 
temperature in an office in the Portland Building at the University of Portsmouth. The building is of a mixed mode, 
i.e. based mainly on natural ventilation but involving also the possibility for heating, ventilating and air-conditioning 
in some parts when the natural ventilation is not able to maintain a satisfactory internal climate for the occupants [I]. 
The modelled parameter is the internal temperature of a centrally located room (number I .14) in the building which 
has one north facing external wall, one corridor to the south and two other neighbouring rooms (numbers I. I 3 and 
1. I 5) on the same floor. It is intended to install a window actuator for this room in the near future but for the time 
being the window is opened only manually by the occupant. There are also two other neighbouring rooms - on the 
floors below and above. A horizontal cut of the monitored offices in the Portland Building and the respective black­
box scheme of the modi:! are given in Figure 2 where the following notations are used: 

External temperature (Tex1), 
Corridor temperature (T.or), 
Internal temperature of room 1.13 (Tm) 
Internal temperature of room 1.15 ( Tw) 
Internal temperature of room 1.14 (T114). 

Both figures show only the zones and variables which are taken explicitly into account in the analysis presented 
here. This is a simplified model which includes only the external temperature as a stochastic input but no occupancy 
effects which are intended to be studied later. All these zones are continuously monitored with temperature and 
humidity sensors and the readings from these sensors are the ones which seem to have a bigger impact on the 
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behaviour being modelled. The data was recorded during July 1998. The training data comprised a period of  fi 
days while the validation was carried out using data covering the last two days of the trial. 

our 

A long-term prediction interval of  up to 1 2  hours was investigated. This interval is evidently divisible by the loggin 
frequency of the sensor readings which is equal to 30 minutes. This frequency might seem too coarse from a geneJ 
point of view but it is quite acceptable in this particular case taking into account the slow dynamics of the building 
in the summer season. The best model was chosen from a set of possible models, representing all combinations of 
(auto)regressive and (auto)delay terms . The backward (dynamical memory) horizon was chosen equal to 2, i.e. the 
prediction of the internal temperature at time k is obtained on the basis of measurements at times k-1 and k-2. 

The initial fuzzy model was built by the subtractive clustering method where the number of the membership 
functions of inputs was defined on the basis of the number clusters of input-output data. These membership 
functions were chosen to be of the Gaussian type and the model adaptation was carried out by a back-propagation 
neural network. The selected learning options of the network were I 00 iterations, zero error goal, initial step size 
equal to 0. 1 ,  and decreasing and increasing learning rates equal to 0.9 and l . l ,  respectively. Further discussions 
about these aspects can be found in (3), [4]. 

The best fuzzy model was found on the basis of one step (30 minutes) prediction after exploring all possible 
combinations of Regression Delay and Proportional Difference model structures. This is equal to 1023 when the 
model is assumed to have 5 inputs and a backward horizon of 2. ln fact, the number of combinations is an 
exponential function of the number of inputs and therefore the computational time and complexity will increase 
significantly as the number of inputs increases. 

Afterwards, the antecedent and consequent parameters of each of the best model were adapted by the neural 
network. The plant and the final model outputs (after learning) for this model are shown in Figure 3 .  It is evident 
that the model outputs are close to the plant outputs which is a measure of a good quality prediction. The residuals 
and their autocorrelation for the same model are shown in Figures 4 and 5 .  It can be observed from the plots that the 
model incorporates almost all significant inputs and that the residuals are to a great extent white noise related. The 
long-term prediction performance of the model is given in Figure 6 and it seems to be quite satisfactory. 

It should be noted that the prediction properties of the derived model are possibly favoured by the small variation 
range of the temperature. TI1is phenomenon is typical for the considered building in the summer season not only 
with respect to the modelled room but also with respect to the two neighbouring ones. In this sense, the purpose of 
the monitoring of the neighbouring rooms and the corridor is not only to see if they can contribute to the 
improvement of the model accuracy for the central room but also to model these rooms in the future and thus to 
extend the conclusions from the small monitored area to the whole building. 

Conclusions 

The results presented in this paper show that the Soft Computing methodology can be successfully used for the 
predictive modelling of office internal thermal behaviour. Although the modelled zone is not a very representative 
one, the same modelJing methodology has already been successfully applied to buildings with fast dynamics and a 
considerable temperature variation range (8). In this respect, the results seem promising and further effort is 
worthwhile to fully assess the capabilities of these models. In order to extend the validity of the results and to make 
the investigation more systematic, the Matlab software is being further extended and improved to handle models 
corresponding to different buildings, seasons, prediction intervals, modelled parameters, dynamical structures and 
adaptation I optimisation schemes. This software is intended to be finally built with a suitable Graphical User 
Interface (GUI) which would significantly facilitate its usage. 

Another investigated direction is the application of Genetic Algorithms for tuning of the initial model parameters [7). 
This is done in parallel with Neural Networks in order to compare the adaptation I optimisation properties of both 
approaches. 
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Fig. 2. Monitored zones and black-box model. 
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