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NMMERICAL SIMULATION OF AIR FLOWS - APPLICATION T THE VENTILATION OF A
PAINT-BOOTH.
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“ABSTRACT

This paper presents a numerical study of instationary three-dimensional
flows. Three methods, a semi-implicit one and two explicit ones were compared

and tested on typical flow configurations (1id driven cavity, natural con-

vection and mixed ¢onvection in a cavity). These methods were then applied to a
problem of ventilation in a paint-booth. The semi-implicit method proved to
have a higher accuraty. The expli¢it method of the M.A.C. type turned out to be
more advantageou$ in calculation time.

INTRODUCTION

When designing a general ventilation system, it is necessaty to take into
account all the ‘transfer mecanisms of pollutants in thé workshep. In fost
cases, these mecanisms are connected with the convection and diffusion proper-
ties of the air flow. However, these properties are generally very difficult to
appreciate because they depend very strongly on the local conditions of flow.

Therefore, it seemed interesting to us to develop numerical codes enabling
us to predict the velocity fields and later, pollutant cohcentrations at any
point in tie workshop. e work presented in this paper is the first step ih
the devélopment 0f these codes.

MATHEMATICAL FORMULATION OF THE PROBLEM AND METHODS OF RESGLUTION

Air flow c0nfigurations in ventilation problems, are essentially three-
dimensional. Considering the air in the workshop as an jdeal intompressible
gas, the air flow is governed by the set of "Navier-Stokes équations”
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Many authors have proposed numerical methods for the resolution of these
equations in the case of bidimensional flows. In particular, the K-¢ method
used by Nielsen [7] for the study of the ventilation in a room heated evenly by
under-floor heating, must be mentioned. This method consists in solving,
besides Navier-Stokes's equations, two extra transport equations, the first one
for the turbulent kinetic energy K and the second one for the dissipation rate
e- On the other hand, there are only very few references about three- dimen-
sional flows, especially in confined spaces. Therefore, we were led to test, in
configurations of the type of those existing in ventilation problems, various
numerical methods extrapolated from those developed in bidimensional flows.

Three methods, using finite differences discretization, were compared :

- the SOLA explicit method [1] of the M.A.C. type (Marker and Cell), adapted
for three-dimensional flows by Gaillard (2] ;

- the explicit method of artificial compressibility [3] s

- the semi-implicit method of artificial compressibility [4].-

These three methods differ on the one hand as to the limitation of the time
step ot and on the other hand, as to the processing of the pressure gradient.

The discretization of the Navier-Stokes equations is obtained by a finite
difference method described in reference [6], and connected to staggered mesh
system of the M.A.C. type (Fig. 1).

Summary of the "SOLA" explicit method

The finite difference scheme is written in the following way :

yntl ooon 1

' - At grad pn+ with = " = V" + terms of transport (1)
div vt - g (2)

Equation (2) 1is carried out iteratively in each cell by adjusting pressures
and velocities with the quantities aplVet vV,

v . iterative index.

6pu _ (d1V Vn+l)u
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1 ¢ y<? ' w + coefficient of overrelaxation
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The numerical stability of the scheme necessary for convergence was studied
by Viecelli [8] and enabled the restriction in the choice of time increment to

be known :
At i 1
2, (L4 L, L

Method of artificial compressibility

Let us introduce the equation for artificial compressibility :

- = - C.div W

This equation is linked to the Navier-Stokes equations for a compressible
fluids. Their state law is written :

P = az, a2 = cte
The method of artificial compressibility consists in replacing the equation
of continuity div V = 0 by the equation of - . C.div VY.
ot

at the asymptotic state, div V 5 0.

The explicit scheme is written in the following symbolic form :

n+l n n n ny -
MU (Uh . Uh’ Vh’ wh, Ph) =0

n n+l n n ny, _
MV (Uh, Vh , Vh’ wh, Ph) =0

wn+1, wn, Pn) = 0

n n
Mw (U, v h h

h,

n+l Vn+1 wn+1

n+l ,n _
prit-pt = -C AqD (Uh s Vi 7 Wy )

The test of convergence of the scheme is the following :
Max‘ AL g”| <1076

i.j.k.
g U, V, W, P
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Numerical stability of the explicit scheme
There is no general theory allowing the stability study of resolution

methods of linear equations. We studied the tangential system stability using
von Neumann's method. The stability conditions chosen were the most restrictive
conditions in the field.

It can be considered that a disturbance at the initial moment will remain
limited during the iterations.

The details of calculations are to be found in réf.[6]. We obtain the follo-
wing restrictions on the time step at :

Cat2 + 2at sl
h2 Reh2 3

Let us note that these conditions are more restrictive than those obtained by
Viecelli [8]-

Semi-implicit method of artificial compressibility

The theoretical advantage of this scheme is that it does not have restric-
tions on the time step unlike the explicit scheme, which could result in a
considerable decrease in the calculation time.

The numerical resolution of this scheme is made using an iterative procedure
of the Gauss-Seidel type [6].

The system of equations to be solved is written :

UE+1,U+1 = Uﬂ+lsv - KL (UE+11U’ VE+19U’ NE+1,U’ PE+1aU)

u

Vn+1,0+1= VE+1’U SK L

h Un+1,u+1’ vn+lsU, wﬁ+l,u, Pﬂ+l’U)

V( h h

NE+ISU+1 - wﬂ+l,u - K LW(UE+1:U+1 VE+1’U+1 WE+1’U, PE+1,U)
PE+1,U+1 = p2+l’U - CAT D(UE+1’U+1, VE+13U+1, wﬂ+l’v+l)
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¢ is the fictitious time associated with the iteration y.
K and C are constants determined from the stability analysis and optimized so
that the quickest convergence can be provided.

The test of convergence of this procedure is the following :

Max Max (
U,v,W i,J,h L

ol [l Jl o e

Numerical stability of the semi-implicit scheme

Calculations were made the same way as for the explicit scheme. We obtained
the following inequalities :

‘ 0 <K < Ren2 cC >0
3
I
1 K (U + vV + W2 ¢ 128
! Reh2
|
i éE.(CAT + l_ + _ﬂi) <1
; h2 Re  6at

These inequalities show that, whatever the choice of time increment at, there
1 are always one K and one C which comply with the stability conditions.

VALIDATION OF CALCULATION CODES ON A TEST CASE

The three schemes were used to determine the field of velocities in a 1id
driven cavity (Fig. 2), in order to test the accuracy and the stability of the
numerical methods and their ability to simulate the flows at high Reynolds's
number (Re) or with recirculation zones. Three-dimensional calculations were
performed at the Reynolds numbers 10, 100 and 1000.

The comparison of the three methods showed that the SOLA explicit scheme was
performing in calculation time (C.P.U.). The gain on time step obtained for the
semi-implicit scheme (ten times larger) is not enough to compensate for the
necessity of iterating the velocities at each time step. On the other hand,
this scheme has a greater accuracy. In the explicit scheme of the artificial
compressibility method as great a number of interations is needed.

When applying symmetrical boundary conditions on sides P, and P,, the flow
is then bidimensional, which enabled us to compare our results with those in
literature:

The flow configuration in the median face for a number of Reynolds Re ="100
is given in Figure 3. The downstream vortex can be seen. The two downstream
vortices in the two lower corners cannot be seen in this figure, but they could
be detected from velocity fields.
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The results obtained {(position of the centre of the main vortex Xo, posi-
tions and sizes of the right (X, Z;) and left (X,, Z,) downstreams vortex) are
compared to those published by other authors (see Table 1).

TABLE 1
Coordinates of the centres of vortices and sizes of secondary vortices in a Lid
driven cavity at Re = 100.

Authors Mesh §g éi éi e L,
This study 22x12x22 8?2 88§ 882 (0.10 ; 0.11)|(0.05 ; 0.05)
Tuann and Olson 8x8 8% 83? 831 (0.13 ; 0.16)|(0.07 ; 0.07)
Goda (3D) 20x20x20 8% (0.10 ; 0.13)|(0.11 ; 0.13)
Schreiber and Keller|121x121 g:gi

APPLICATION TO THE VENTILATION OF A PAINT-BOOTH

The SOLA scheme and the semi-implicit scheme were tested on a real flow
configuration. They were applied to the ventilation of a paint-booth of the
"car-body work type". Air was introduced into the booth at steady speed (W = 1)
through a ceiling filtering dust (plenum). It was discharged through the floor
by a draining systems made of two parallel pits (Fig. 4).

The flow 1is assumed to be Taminar and bidimensional. The bidimensional na-
ture of the flow was checked experimentally by another research team from the
INRS [5]. The booth was symetrical, which enabled us to restrict calculations
by a half.

Numerical results

The flows studied are those corresponding to Re = 100, Re = 1000 and
Re = 5000. Calculations were made using the SOLA explicit code and the semi-
implicit code. The mesh system is composed of 22 x 6 x 22 nodes, and the time
increment is at = 0.01. The initial condition of the flow at Re = 100 corres-
ponds to the undisturbed uniform flow, while those of flows at Re = 1000 and
Re = 5000 are the steady states obtained at Re = 100 and Re = 1000 respecti-
vely. Convergence was very slow, especially for the semi-implicit scheme ; this
was due, on the one hand to the discontinuity of the boundary conditions and or
the other hand, to the slowness of the Gauss-Seidel iterative procedure.
Indeed, when the velocity values calculated using the SOLA code are taken as
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boundary conditions at the outlet, the convergence of the semi-implicit method
is obtained only after 100 iterations.

The three flows studied are differentiated by the length of their recircu-
Jation zones (Fig. 5, 6). When Re = 5000, we brought to light the fact that
there was actually a zone of dead flow all along the wall (Fig. 7).

The coordinates (X, Z,) and (X5 Z,) of detachment and reattachment points,
and other calculation results made with the AMDHAL V7 are grouped tagether in
Table 2.

TABLE 2
Paint-booth - Calculation results.
Length of the
Number of Number | Total recirculation zones (m)
Re | itera- CPU/At of C.p.U. ' (m)
tions/at cycles Xy 5 71) (X 5 Zp)
100 823 14.5 371 105 mn | (0.92 ; 1.36) (0.92 ; 0.42)
1000 822 14.5 470 31 mn 05| (0.77 2.10)| (0.77 ; 0.75)
5000 819 14.5 586 (0.77 ; 2.81)|(0.77 ; 0.15)
DEVELOPMENT

Let us now study the case in which air carries a pollutant. We introduce the
following assumption : the physical properties of air are supposed to be cons-
tant, except the density for which Boussinesq's approximation is applied. In

the case where there is only one pollutant, the equation systems to be sol-
ved is the following :

aVi s s s 1 , ]
T + Vj.vi,j = - S Pyi +p,8 glT - To) 51,
vi.i =0

N
L1 T,i1

The theoretical analysis of the stability of this systems was made for both
schemes of the artificial compressibility method and enabled us to specify the
new fields of stability. The additional inequalities which must be respectively
met are the following :

- Explicit scheme :

__AE___g l.

Re Prhz 6
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- Semi-implicit scheme :
T 2
k>0 (v 3y cret (U o+ v o+ W2
h2 2 At Re.Pr Re.Pr

N

Application to natural convection in a cavity

The results obtained, as much for the field velocity as for the pollution
field (position of the main vortex centre, position of the downstream vortices,
isopollution curves and coefficient of heat transfer at the wall) are in total
accordance with those noted in literature (see reference [6], figure 6 and
table 3).

TABLE 3
Natural convection in a cavity - Results of calculations.

Rayleigh's Schemes Number CPU/At total NU
number of itera| (s) CPU
tions/at Amdhal V7 | This De Vahl Poots
. study Davis
Ra = 100 SOLA 64 0.68 1 mn 1.015
Semi-implicit 62 4.46 2 mn 45 1.0045
Ra = SOLA 56 0.64 | 3mn25 |1.10 . .
a =1000 | i mplicit| 98 5.85 | 4mn o0l [1.19 1-117 1ff 1.061
R = 106 SOLA 64 0.82 | 4 m 15 |2.285 o | 1.706
a7 0% foemizimpricit| 62 |10.63 | 5 mn 19 |2.30 2 70

Application to a mixed convection in a 1id driven cavity

The purpose of this calculation is to show the change in the flow configura-
tion due to buoyancy forces (Figure 7).
These programs must now be applied to the paint-booth.

CONCLUSION AND FURTHER DEVELOPMENTS

The thrge calculation codes developed proved to be appropriate for the reso-
lution of some problems encountered within the framework of general ventilation
of rooms. The SOLA code turned out to be superior since its computational time
is smaller. They have already provide { some most interesting information.
However, the development of these codes must be continued, on the one hand in
order to overcome some numerical difficulties and on the other hand, to intro-
duce the mechanism of turbulence.
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NOMENCLATURE
Vi (U,V,HW) : velocity composants
p ! pressure
T : température
0 : air density
t : time
At : time step
X, ¥, Z : coordinates
h ou AX, Ay, az : space step 5
div : divergence
indices

i 11, 2,3

h : index of space discretisation

n : index of time discretisation

D : indice of iteration
Cp : heat capacity at constant pressure (per unit mass)
B : coefficient of volume expansion with temperature
g : acceleration associated with gravity
A VL : thermal conductivity
Re : = : Reynold's number

v
Pr : Cpp/a : Prandtl number
Ra = 48L30at Rayleigh number
av

Mut : local Nusselt number
) : mean Nusselt number
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1. Mesh 1, j, k.
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Fig. 4. Flow configuration at Re = 1000.
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Fig. 6. Natural convection in a cavity.
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Fig. 7. Lid~driven cavity heated.
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