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1 NTRODUCT I ON

ì'lhendesiþnlngageneraìventi.ìat.ionsyst'ètn'it.isnecessalytotakeirtto
açcount, al'ì the transier nrecan'iSrh:S of pollutant's ìn the wofkshop' ln ihost

cases, these mecatìisms aÊe connected with the convection and diffus'ion proper-

iles of the aïr f'low. However, theie propertieS are generally very difficult tô

appreÒ.iate be.cause they deþend very strongly on the locai condit'ionË of flon'

therefore, ìt seenèd interestln$ to us to deveìop nutnerical codes enablìñ$

us to predict the velocity fiel ds and ìater', poìlutant coñcentrat'ions at arty

point ìn the w6ikshop. Þre uork presented in th\s papèr is the flrst step ih

the dev$'lopment òf theiê codes'

t/tATHEI.IATICAL F0RJ'ÌuLATI0\l 0F THE PlloBLtM AND l"ìETHODS 0F RES0LUTI0N

Air flow configUrations ìn vehtjlat'iòn probìems' are essentially three'

d.irnensional . consldering the air in the workshop as an ideal irËornþressible

gâ$, the air florc ìs governed by the set of "Navier-stokes êquations" :

#. vi.rli,i = ' þÞ.,t 
*fo ui,jj .i = l, z, 3

Vi.i = 0
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Many authors have proposed numerica'l methods for the resolution of these
equations in the case of bidimensional flows. In particuìar, the K-g method
used by Nieìsen [7] for the study of the ventilation in a room heated evenly by
under-f'loor heating, must be nentioned. This nethod consists in solving,
besides Navier-Stokes's equations, two extra transport equations, the first one
for the turbuìent kinetic energy K and the second one for the dissipation rate
e'0n the other hand, there are only very few references about three- dimen-
sional f'lows, especiaì ly in conf ined spaces. Iherefore, we were 'led to test, .in

configurations of the type of those existing in ventilation prob'lems, various
numericaì methods extrapoìated from those deve'loped in bidimensional flows.

Ïhree methods, using finite differences discretjzation, were compared :

- the SOLA expìicit method l1] of the M.A.C. type (Marker and Cell), adapted
for three-dÍmensional flows by Gail lard [ 2] ;

- the explicit method of artificial compressibility [3] ;

- the semi-impìicit method of artificÍal compressibìlity Ia].
Ïhese three methods differ on the one hand as to the limitation of the time

step ¿t and on the other hand, as to the processing of the pressure gradient.
The dÍscretization of the Navier-Stokes equations is obtained by a finite

difference method described in reference [6], and connected to staggered mesh
system of the M.A.C. type (Fig. 1).

Sunmary of the "SOLA" expl icit method

The finite difference scheme is written in the following way

Vn+1 = tn - ¡t grad pn*1 with = r[ = V[ + terms of transport (1)

di v vn+l (2\

Equation (2) js oarrl'ed out iteratr'vely in each cell by adjusting pressures
and velocities with the quantitÍes Opuet 3vu.

s r iterative index.

^nu=- (divvn+l¡u

z¿t(l-+ 1 *J-)
^x2 

Ly2 Lz2

0

1(r<2

òvu = 
^t 

ÒPu

Axi

û) coeffic'ient of overrelaxation
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The numerical stability of the scheme necessary for convergence was studied

by Viece'l1i [8] and enabled the restrict-ion in the choice of time increment to

be known :

At .(
I1

zu (l + I * 1)
Lx2 6y2 Lz2

¡t \< min 1ax, aJ, az¡

UVtl

Method of artjficial compressibiì ity
Let us introduce the equation for artificial compressibilìty

ôP = - c.div vu

ôt

This equation is linked to the Navier-Stokes equations for a compressible

fluids. Their state law is written :

P=A2p a2=Cte
The method of artificial compress'ibiìity consists in replacing the equatÍon

of continuity dìv V = 0 bV the equatìon ôP = - C.div Vu.

ôr

at the asymptotic state, div V + 0.

The explicit scheme is written in the following symboìjc form:

Mu (uil+l, uil, uil, til, oil) = o

Mv (uil, uil*t, uil, til, el) = o

MÌ,¡ (uil, uil, *il*t, *il, oil) = o

pn+l-pn = -c 
^rD 

(uil*t, v[*1, w[*1)

The iest of convergence of the scheme is the following

nn+l
Ê,u*1,

i.j.k.
E : U, V, l,l, P

< 10-6
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Nurnerical stabil ity of the explicit scheme

There í s no genera'l theory al'l owi ng the stabi I i ty study of resoì uti on
methods of linear equations. We studied the tangential system stabiìity using
von Neumann's method. The stability conditions chosen were the most restrictive
conditions in the field.

It can be considered that a disturbance at the initial moment will remain
'l imited during the iterations.

The details of ca'lculations are to be found in réf.IO]. we obtain the fol'lo-
wing restríctions on the time step ¿t :

¡t .1.\-
Reh2 6

(u + V + i,l)at.(1
h

c >0

C6tz - 261 ¿

h2 Reh2

Let us note

Vieceìli IB].

1

3

that these conditions are more restrictÍve than those obtained b.v

Semi-imp'l icit method of artificial cornpressibìl i ty
ïhe theoretical advantage of this scheme is that it does not have restric-

coul d resul t in a
tions on the time step unl ike the exp'l icit scheme, which
cons i derabl e decrease Í n the cal cul ati on time.

The numerical resoìution of this scheme is made using an

of the Gauss-SeÌdel type [6].
i terati ve procedure

The system of equations to be solved fs written :

u[+1'u+t = ril*t,u - K LU (Uil+1,r, uil*,r, ril*,u, pl+1,u¡

vf+1'u+t- uil*t'u - K Lv(uf,+1,u+t, uil*t,r, r[*,u, pn+1,u¡

wfl+l,u+1 = ril*t,u - K L,,(Uil+l,r*t, uil*,r*t, *il*,u, pn+l,u¡

pf,+1 'u+1 = oil*t,, - CA, D( Uil+1,r*1, Vil*1,u+1, ¡r+1,u+1 ¡
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x i s the f i cti ti ous time assoc'iated wi th the i terati oIì u .

K and C are constants determined from the stab'ility analys'is and optimized so

that the quickest convergence can be provided.

The test of convergence of this procedure is the following :

l'lax
-(EU,V,I^J

14ax
i, j,h U

Numerical stabjlity of the serni-imp I icit scheme

Calculations were made the same way as for the expìÍcit scheme. \^le obtained

the fol ì owì ng i nequal i ti es :

o <K aReh2 c >i

L I'ul, l"l'lolr

3

K(u + v + r^t)2 *12¡tz
F(e h2

!!(cr"*1 * h2 )-<L
h2 Re 6¡t

These ìnequa'ìities show that, whatever the choice of time increment ¿t, there

are always one K and one C wh jch corrp'ly with the stabil jty condit'ions.

VALIDATION OF CALCULATION CODTS ON A TEST CASE

The three schemes were used to deterrnine the fie'ld of velocities in a lid
driven cavìty (Fig. 2), in order to test the accuracy and the stabiìÍty of the

numerical methods and their abill'ty to simulate the flows at high Reynolds's

number (Re) or with recirculation zones. Three-dimensional calculations were

performed at the Reynolds numbers 10, 100 and 1000.

The comparison of the three methods showed that the S0LA exp'licit scheme was

perform'ing Ín calculation'time (C.P.U.). The gain on tjme step obtained for the

semi-'imp'licit scheme (ten tjmes larger) is not enough to compensate for the

necessìty of ìterating the velocjties at each time step.0n the other hand,

th.is scheme has a greater accuracy. In the explicit scheme of the artific'ial
compressibility method as great a number of interations is needed.

When applying symmetrical boundary cond'itions on sides P, and P,, the flow

is then bidimensional, which enabled us to compare our results wìth those jn

I i terature:
The flow configuratìon in the median face for a number of Reyno'lds Re ='100

is given in Figure 3. The downstream vortex can be seen. The two downstream

vortices in the two'lower corners cannot be seen in this figure, but they could

be detected from velocity fie'lds.



396

The results obtained (position of the centre of the main vortex Xo, posì-

tions and sizes of the right (X¡, 21) and left (X2, Z2) downstreams vortex) are

cornpared to those published by other authors (see Table 1).

TABLE 1

Coordinates of the centres of vortices and sizes of secondary vortices in a Lid

drjven cavity at Re = 100.

Authors L,

Thi s study (0.05;0.05)

Tuann and 0l son (0.07 ; 0.07)

Goda (30) (0.11 ; 0.13)

Schrei ber and Kel I er

APPLICATION TO THE VENTILATION OF A PAINT-BOOTH

The S0LA scheme and the semi -impl ici t scheme were tested on a real fl ow

configuration. They were appìied to the ventilation of a paint-booth of the

"car-body work type". Air was introduced into the booth at steady speed (W = 1)

through a cei'ling fi'ltering dust (plenum). It was discharged through the floor
by a draining systems made of two paralìe'l pits (Fig. a).

The flow is assumed to be 'laminar and bidimens'ional . The b'idÍmensional na-

ture of the flow was checked experimentally by another research team from the

INRS [5]. The booth was symetrica'1, which enabled us to restrict calculations

by a ha'lf .

Numerical resul ts
The fl ows studi ed are those correspondi ng to Re = 100, Re = 1000 and

Re = 5000. Ca'lculations were made using the S0LA expìicìt code and the semi-

implicit code. The mesh system is composed of 22 x 6 x 22 nodes, and the tÍme

increment is ¡t = 0.01. The initial condition of the flow at Re = 100 corres-
ponds to the undisturbed uniform flow, while those of flows at Re = 1000 and

Re = 5000 are the steady states obtai ned at Re = 100 and Re = 1000 respecti -
vely. Convergence was very sìow, especia'lly for the semi-impìicit scheme ; this
was due, on the one hand to the discontinuity of the boundary conditions and or

the other hand, to the slowness of the Gauss-Seidel iterative procedure.

Indeed, when the velocity va'lues caìcu'lated using the SOLA code arê taken as

l'1es h
z

o
0

I
I

X

z
X2

Z2
L,'

22x12x22 0.65
0.75

0.02
0.03

0.95
0.05

(0. l0 0 11)

BxB 0.62
0.7 4

0
0

05
07

0
0

97
04

0.16)t(0. 13

20x20x20 0.62
0 .75

(0.10;0.13)

0.61
0.7 4

L2Lxl?L
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boundary condit'ions at the outlet, the convergence of the serni-impìicit method

is obtained onìy after 100'iterat'ions'

The three flows studied are differentjated by the length of their recircu-

I ati on zones (Fi g. 5, 6) ' l'/hen Re = 5000 ' we brought to I Í ght the f act that

there was actualìy a zone of dead flow all along the wal'l (Fig'7)'

The coordinates (xr, 21) and (X2 , Zr\ of detachment and reattachr¡ent points'

and other calculation results made with the ATlDHAL V7 are grouped tagether in

Tabl e 2.

TABLE 2

Paint-booth - Calculation resu'lts'

Length of the
reci rõul ãti on zones (m)

(rn)
Re (Xr ; Zr) (Xz ; Zz\

100
(0.s2 ; 0-42\

I 000
(0.77 ; 0.75)

5000
rc.77;0.r5)

DEVELOPl4ENT

Let us now study the case in which air carries a pollutant' l'/e introduce the

fol'lowing assumption : the physical propertìes of air are supposed to be cons-

tant,exceptthedensìtyforwhichBoussjnesq.sapproximationisapplied.In
the case where there is only one pol'lutant, the equation systems to be sol-

ved 'is the f oì l owi ng :

# - vi.vi,i * po F g(T - To) oi,1
p

P 'l

vi.i - 0

DT ¡. T,ii
Dt pCP

The theoretical analysis of the stability of this systems was made for both

schemes of the artificiaì compressibility method and enabled us to spec'i'fy the

newfie.ldsofstability.Theadditionalinequalitieswhichmustberespectively
met are the following :

- Explicit scheme :

¡t -L
Re Prh2 6

Total
C.P.U

Number
of

cyc'les
CPU/¡t

Number of
i tera-

tions/¡t
1.36)(0. e2105 mn37114.5823

2.10)(0.77 ,31 mn 0547014 .5822
2 .81)(0.7758614.5819
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- Ser¡ j -imp'l i ci t scheme :

T

Krto.K'(h2 * 3 ).<1et(' h2 2ñ Re.Pr
u + v + w 2-( 3

Re. Pr

Application to natural conv ection in a cavity
The results obtained, as much for the field velocity as for the po'llution

field (position of the majn vortex centre, position of the downstream vortìces,
isopoìlution curves and coefficient of heat transfer at the wal'l) are in total
accordance with those noted in 'literature (see reference [6], figure 6 and

tabl e 3) .

TABLE 3

Natural convect'ion i n a cavi ty - Resul ts of ca'l cul at'ions.

Rayì ei gh ' s
n umbe r

Poots

Ra = 100

Ra =1000 1 .041

Ra = 10a 1 .706

Appì ication to a mixed convection in a I id driven cavity
The purpose of this calcu'lation is to show the change in the flow configura-

tion due to buoyancy forces (Figure 7).
These programs must now be applied to the paint-booth.

CONCLUSION AND FURTHIR DEVELOPMENTS

Ïhe thrge calcuìation codes developed proved to be appropriate for the reso-
lution of some probìems encountered within the framework of general venti'lation
of rooms. The SOLA code turned out to be,superior sjnce its computational time
is sma'l ler. They have al rea(y provfAeg{ some most interesting information.
However, the development of these codes nr,¡st be continued, on the one hand in
order to overcome some numerical difficu'lties and on the other hand, to intro-
duce the mechanism of turbu'lence.

irïSchemes Number
of itera
ti ons/¡t

CP U/¡ t
(s )

tota l
CPU

Amdhal U7 Thi s
study

De Vah I
Davi s

SOLA
Semì -impì i ci t

64
62

0
4

68
46

1mn
2mn45

1 .015
1.0045

SOLA
Semi-impl ícit

56
9B

0.64
5 .85

3
4

mn

mn

25
01

1

1

10
19

L.TL7

SOLA.
Semi -imp'l í ci t

64
62

0
10

B2
63

4
5

mn

mn

15
19

2.285
2.30

2.24
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NOÍ'IENCLATURE

Vi (U,V,t^l)
p
T
p
t
^tXr Jr Z

h ou 6x, Ày, az
div
i n<li ces

VL
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Fig. 6. Natural convection in a cavìty.
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