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Transient Solutions to a Stochastic Model 
of Ventilation 

L. SIURNAt 
G. M. BRAGG! 
G. REUS!NG! 

By considering i11icial cm1di1i.o11s and input parameter.t as random 1•ariaQ/es. a rwo cell conceptual 
swclwsuc t·e111ilatio11 system model is developed and the res11/ti11g stochastic differe1111al i!q11a11011s 
solved. Based 011 species co11serva1io11 eq11c11w11s. rlre model is capable of determi11i11g tire 
co11ce11tratio11-time tru1ec.tories for a specified confidence interval. 

Two sample cases illustrate lire j le . ..:ibility c1f 1/re model in d1arac1er1=1119 direrse nm1ila1io11 
systems. a11d in determining the impact of mpur parameter u11certai11ty or randomness 0 11 tire time 
behaviour of co11ce111rar io11s. 

NOMENCLATURE 

A 1 portion of Cell ! surface area across which flows occur 
A2 portion of Cell 2 surface area across which flows occur 

covariance operator Cou 

c,• * 
C 1(1J 
C2( I) 

C .,, {I) 

vector stochastic process 
instantaneous Cell l contaminant concentration 
instantaneous Cell 2 contaminant concentration 
instantaneous ambient or surroundings contaminant 
concentration 

c,•(1*) instantaneous Cell l non-dimensional contaminant 
concentration 

C ,*(c*) instantaneous Cell 2 non-dimensional contaminant 
concentration 

C~(c*) instantaneous ambient non-dimensional contaminant 
concentration 

F( c,• *) drift component coefficient matrix 
G(C~ *) diffusion component coefficient matrix 

K, grouped coefficient term, a random variable of con
stant uncertainty 

K, mean component of coefficient term 
K( stochastic component of coefficient term 

LEV local exhaust ventilation 
li1 contaminant source strength, kg mo! s- 1 

Q, mean flow exhausted from exhaust hood 
Qr mean flow across exhaust hood face 
Q, mean flow between Cell 2 and workplace sur

roundings 
Qm mean makeup air flow supplied as general dilution 

ventilation 
Qr turbulent component of exhaust hood face fl.ow 
Q, turbulem flow component between Cell 2 and work

place surroundings 
RMS root me:.in square amplitude 
SOE stochastic differential equation 

1• non-dimensional time. 1 • = 1/r 
Var variance operator 

v:· turbulent velocity component of flow across exhaust 
hood face 

i·; turbulent velocity component of lfow across work
place exterior 

t', Cdl I volume 
t': Cell 2 volume 
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W, Weiner or Brownian motion process 
dW, independent and stationary increment of Wiener 

process 
/';j correlation structure of coefficient K, with Ki 

K cell volume ratio. K = t'2/t', 
w probability state variable 
</! fraction of contaminant release rate confined to Cell 

\ 
<J,- correlation structure (variance) of coefficient K, 
.,, stationary Gaussian white noise process 

1. INTRODUCTION 

WITHIN THE engineering disciplines, most dynamical 
models of physical systems have been carried out in a 
deterministic framework. That is, given sufficient infor
mation at one instant in time the deterministic model 
"exactly" determines the entire furnre behaviour of the 
system. In contrast, probabilistic models assume that 
regardless of how much is known about a system at a 
given instant, it is impossible to determine with absolute 
certainty the future behaviour of the system. Probabilistic 
models, then, are mathematical models which include 
uncertainty and randomness. Some recent examples of 
probabilistic models of various physical systems may be 
found in (1-3]. 

A probabilistic approach is adopted here by con
sidering that many of the phenomena influencing a ven
tilation system are inherently random. or at the very least, 
quantifiable only in a scatistical sense. thus implying a 
measure of uncertainty. Through use of the tools of 
stochastic analysis. a conceptual two-zone stochastic 
model of a ventilation system is de\ eloped. The resulting 
solutions provide concentration values over time as a 
stochastic random variable with confidence interval 
ranges. 

This paper focuses on transient s0\utions to the model. 
Two sample cases are examined to illustrate the model's 
usefulness. This work is an extension of previous research 
on steady-state solutions to the model [.+] . For com
pleteness and for ease of understanding. some of the 
theoretical treatment given in (4] is repeated here . 
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The reader who is unfamiliar with the concepts of 
stochastic processes. stochastic differential equations 
[SDE's], and stochastic calculus is referred to [5- 7]. 

2. DEVELOPMENT OF THE 
STOCHASTIC MODEL EQUATIOf'<S 

The firs t stage in the tochastic analysis of a ventilation 
system involves the development of the deterministic 
model equations. Fo llowing this, input parameters are 
treated as random variables and the equations converted 
into stochastic differential equations [SDE's] with the 
dependent variables. the contaminant concentrations, 
considered as stochastic processes. For discussion pur
poses, the development of the ventilation system model 
equations will be carried out with specific reference to a 
local exhaust ventilation [LEV] system with the under
standing that the model can later be generalized. 

2.1 Idea/i::.ations and assumptions 
In order to produce a linear ordinary differential equa

tion with time as the independent variable in the deter
ministic LEV system model, the following idealizations 
and assumptions are used. 

(i) The spatial domain is partitioned into two com
municating cells forrnin.g an open. one-dimensional sys
tem (Fig. 1) . With reference to a LEV system. the inner 
cell, Cell 1. is representative of conditions occurring 
within the exhaust hood interior, and the oucer cell . Cell 
2, of the immediate workplace environment within which 
the exhaust hood is situated. Exterior to the outer cell, 
conditions are representative of the general environment 
with which the workplace interacts. The physical 
geometry is specified by the cell volumes (¥1, f"c) and the 
areas of surfaces (Ai. A 2) across which flows of con
taminant and air occur. 

(ii) Two species, air and a respirable contaminant, 
constitute a non-reacting mixture within the system. It 
will be assumed that the contaminant generation rate, lit, 

Cell 2 
+'2,C2.: P?. 

Fig. I. Flow diagram \"or model ventilation system. 

is sufficiently small that its contribution to the total mass 
in the system may be ignored. Thus, at any time the total 
mass in the system, or a portion of the system. is constant 
and equal to the contained air mass. This is equivalent 
to assuming that the mixture density . µ. is equal to the 
density of air at the prevailing conditions. The con
taminant is considered passive, meaning it is generated 
with negligible momentum and buoyancy, and is in the 
gas phase and/or is capable of being affected by air cur
rents without momentum losses to the air flows. 

(iii) Ventilation processes considered include both 
mechanical ventilation and infiltration--exfiltration pro
cesses. The influence of turbulence, unavoidable in most 
practical ventilation applications. will be included. Natu
ral ventilation, such as that arising through open win
dows and stack effects is not considered explicitly, 
however. the model developed could be extended to 
include this case. 

Infiltration--exfiltration processes are often char
acterized by leakage distributions and pressure differ
entials across an enclosing envelope. Results from [3] 
found that for all but particularly air-tight enclosures. a 
uniform leakage distribution gave the best estimate of 
flow across the envelope. Thus, within this work both 
mechanical ventilation and infiltration--exfiltration pro
cesses are approximared as one-dimensional. 

(iv) To provide a model with behaviour similar to a real 
system, contaminant genera tion is treated as occurring 
within or at the outer boundary of Cell l : that is. near 
the hood face. At the time of generation. contaminant 
may issue directly (undiluted by workplace air) into 
either Cell l, Cell 2, or both. In the general case. rp is 
defined as the fraction of the contaminant release rate 
confined to Cell l, and the compliment, (l - ¢) as the 
fraction escaping undiluted into Cell -· For the typical 
situation IP = l and turbulence is the only mechanism for 
direct transport of contaminant from Cell l to Cell - · 

(v) The ventilation processes result in the transport of 
both air and contamina nt in to and out of the cells as 
well as between the cells. In principle, all the ventilation 
processes can be Reynolds decomposed into one-dimen
sional mean flows plus superposed turbulent processes, 
assuming the turbulence to be statistically stationary with 
respect to time. 

With reference to Fig. l, the one-dimensional mean 
flows are : Q, the exhaust hood exhaust or exrracredf!ow, 
Qr, the flow originating fro m the workplace that is drawn 
across the exhaust hood .tiice and into the exhaust hood. 
Qm, makeup air supplied as general dilution ventilation 
distributed throughout the workplace environment. and 
Q;, inji/1ration-exfiltrario11 flows occurring between the 
workplace and its .:xterior. 

A study of the impal:t of infiltration transients. build
ing struc ture dynamic r.: ·ponse. and internal building air 
mass dynamic responsl! on concentration levels in a fully
mixed one-zone model concluded that these parameters 
are unlikely to be of importance in a model of an infil
tration-mechanical ventilation-air contamination sys
tem [9]. Therefore. to simpliry the mathematical solution 
of the stochastic equatiL1ns. all mean flows will be con
sidered steady. It sh~1ulJ be noted however. that this 
assumption is not a limitation dictated by the methods 
available for solving SDE"s. 
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The effect of turbulence on contaminant transport 
belween cells is included through explicit consideration 
of turbulent processes al cell inter/(1ces. Superposed on 
the mean flows Q, and Q, are rapidly fluctuating (tur
bulent) flows characterized hy the fluctuating velocity 
components u; and u; acting across the respective control 
surfaces. These are converted to turbulent flows Q,. and 
Q; using a Boussinesq-like approach [10]. Molecu
lar diffusion of contaminant across cell boundaries 
is assumed to be orders of magnitude less than that 
occurring as a result of turbulent transport and may be 
neglected. 

The turbulent nature of the remaining flows in Fig. 1, 
are considered as contributing only to the mixing of 
contaminent and air within a cell and do not contribute 
to the transport of contaminant between cells, hence 
they do not appear explicitly in the transport equations 
developed in the next section. 

(vi) Continuous spatial gradients of the contaminant 
concentration within a cell cannot be supported. This 
corresponds to an assumption of complete mixing and 
implies that the chemical composition of air within a cell 
is uniform. Heuristically it is argued that sufficient tur
bulent induced mixing occurs so that almost instan
taneously, the contaminant concentration is constant 
throughout a cell. Finite changes in the contaminant 
concentration occur across cell boundaries. This is con
sistent with classical mixing theory models (11]. 

2.2 Deterministic model equations 
The deterministic model equations for the temporal 

evolution of the contaminant concentration in Cell 1 and 
Cell 2 are now developed by: applying conservation of 
contaminant species to Cells l and 2; applying con
servation of air species to Cells 1 and 2; combining the 
four mass balances, and finally non-dimensionalizing. 
Details of this procedure may be found in [ 12]. The final 
non-dimensional form of the deterministic ventilation 
model equations become: 

dC i"'~t*) +K (ib_ + Qr )cct(t*)-Cf (r*))- K</Jm = o, 
dt Qen:f Qerd' mrcf 

(1) 

dCt(t*) _ Qr (Ci(t*)-Ci*(t*))+(lb_ + Q;) 
dt* Q.~, Q.~.. Q.~, 

ri1 
x(C~(l*)-C':,(1*))-(l-</J)-.-=O. (2) 

mret" 

In both equations. the first term represents the time vari
ation of contaminant concentration in the cell. The 
second term in equation ( 1) accounts for the exhaust sink 
from Cell 1 and contaminant transport between the cells. 
The second term in equation (2) is due only to con
taminant transport between the cells. The third term in 
equation (2) results from the environment source and 
contaminant transport by infiltration between the environ
ment and Cell 2. The last source term in each equation 
arises from the fraction of contaminant emitted directly 
into the cell from the contaminant source. Q,M and m,c1• 

are ensemble average values and K is the cell volume ratio 
-Y,/t', . 

. .... " 

2.3 Stochastic interpretation of the ventilrltion system 
model equations 

Equations (I) and (2) form a coupled set of deter
ministic first order ordinary differential equations with 
independent variable 1•, and dependent variables Ci*(1*) 
and C 2*(t*). Seven inpul parameters. namely Q,. Qm, Q,, 
Q,-. C.,,(c), m, and ¢, representing or associated with 
physical processes appear explicitly as either coefficients 
or source terms in these equations. These. together with 
the initial conditions, determine the specific behaviour of 
the solution. Considering that the environment within 
which the ventilation system operates is endowed with a 
large number of degrees of freedom that cause the physi
cal processes in the environment to fluctuate rapidly, 
there is reason to treat the input parameters as stochastic 
in nature. Variability in these input parameters could be 
caused, for example. by the random activities of people 
situated within the ventilated environment. variations 
in the infiltration rate caused by changes in weather, 
variations in the contaminant generating processes, and 
variations in the hood face flow caused by reduction of 
the effective hood face area through the position of the 
worker. 

In this study, the input parameters will be modelled as 
random variables of constant uncertainty. In a fashion 
analogous to the Reynolds' decomposition for turbulent 
quantities. the instantaneous random variables are 
decomposed as for example: 

m(t*, w) = m(t*) +m'(t*, w), 

where the over-barred term is the "'deterministic" mean 
(steady or unsteady) component of the physical process, 
the primed term represents the fluctuating or stochastic 
component. and w is the probability variable. The sto
chastic components are modelled as independent station
ary Gaussian white noise processes with zero mean and 
zero (auto and cross) correlations. For clarity in the fol
lowing analysis the input parameters in equations 1 and 
2 are grouped and renamed resulting in: 

where the substitutions outlined in equations (5) have 
been used. 

K 2 = -K, 

K</Jriz 
Ki=-.

mrief 

Or 
K, =--=-

Qc:rf,. 

(
0 Q) ri1 K 6 = ~+-' C:(1*)+(l-¢)-.-

Ql!rc( Qc,cl mrcr 

(5) 
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Equations (5) are similarly decomposed into mean and 
stochastic components as: 

K;(t*,w) = K,(t*)+K((t*, w). 

Substitution into the model equations (3) and (4) 
results in: 

dC 1*(t*) - - -
dt* = K 1Cr(t*)+K2Ct(1*)+K1 

+ K'1 C i*(t*)+ K'2C i'(t*)+ K'i, (6) 

dC z*(t*) - _ _ 
dt* = K4Ci*(t*)+K5 Ci'(t*)+K~ 

+ K'4Ci*(t*)+ K'5C 2*(t*)+ K~. (7) 

where the probability-based variable w has not been 
written for clarity. 

The final step required in the interpretation of the 
LEV system model equations as SD E's involves rewriting 
equations (6) and (7) in vector algebra notation and 
defining the mathematical representation of the stoch
astic components. The result is a vector stochastic differ
ential equation describing the cr(1*) and Ci'(t*) pro
cesses which can be solved by the methods of stochastic 
calculus. 

The set of stochastic differential equations (6) and (7) 
can be written as : 

dC,* * C* ) G(C* ) ' ciT = F( , * + , * c;,•, 

or in differential form as : 

where: 

G(C,*•) = 

[ Ci*~t*) c i*(t*) 

0 
I 0 

0 Ci*(t*) 

(8a) 

(9) 

(10) 

(11) 

In keeping with the terminology of stochastic calculus, 
Ct''* is termed a vector (Ito or Stratonovich) stochastic 
process, F(C,*•) the drift matrix, and G(C,*•) the 
diffusion matrix. ~'* represents zero-mean independent 
Gaussian white noise processes and can be defined for
mally as the derivative in time of a Wiener process, W,*. 
Further detail, and specialized references on both Wiener 
and White noise processes may be obtained in [5] and 
[7]. 

Evaluation of equations (8) is conditional on a precise 
definition of the integral of the diffusion term. which is 
referred to as a stochastic integral. In this study, the Ito 
interpretation of the stochastic integral has been chosen 
to enforce conservation of mass in the mean equation. 

3. TIIE STOCHASTIC SOLUTION PROCESS 

Stochastic analysis allows the explicit calculation of 
an accurate but arbitrary solution trajectory for given 
sample functions of the initial values and of the Wiener 
processes. In general, however, there is less interest in 
arbitrary process sample functions or trajectory solutions 
than in certain properties of the solution process. Typi
cally the solution process properties of interest would 
include a limited number of moments of the solution 
process, which for actual physical processes are often all 
that can be reasonably estimated. As evaluation of the 
solution process moments from the explicit analytical 
sample function solution is computationally difficult. the 
Ito Lemma is used here as a simpler means of obtaining 
the moment equations . A detailed presentation and proof 
of the !16 lemma is contained in [5] and [6]. 

Application of the Ito lemma to equation (8) will 
result in a system of solution process moment equations. 
For the general case of a non-linear ordinary SDE. the 
resulting system of moment equations involve an infinite 
hierarchy of differential equations with the equation 
for an nth order moment involving moments of higher 
order. Some form of closure, for instance truncation. 
must be adopted or else the defining SDE must be 
reformulated with linear approximations. For the special 
condition of a linear SDE, which equation (8) satisfies if 
certain constraints are imposed on K3 and K6' an nth 
order moment equation involves only moments of order 
nor less so that the moment equations can be integrated 
easily . In the case of a linear SDE the first and second 
order moments are sufficient to establish the mean solu
tion and confidence intervals. while higher order 
moments are generally useful in non-linear formulations 
where they are used in closure schemes. 

In the material that follows asterisks denoting non
dimensional time and concentration variables are omit
ted for clarity . 

3.1 Treatment of non-linear terms 
Equation (8) is in the strictest sense a non-linear SDE. 

The non- linearity arises in the two coefficient terms K3 

and K6 or' equations (5) through the variable products 
cf>m, C ,., Qm. and C~Q;. To avoid at least initially che 
necessity of closure schemes. the terms are linearized by 
assuming that cf> and c ;, may be treated as constants. 
Physically. it is argued that in :rny well designed ven
tilation system ¢ . the fraction of contaminant release 
issuing directly into the hood. will be a constant equal 
to one and thus the only mechanism for contaminant 
transport into the room is through turbulence. In a simi
lar fashion. C~. the ambient contaminant concentration, 
will be viewed as an infinite sink that is unaffectd by any 
contributions from the system source. These assumptions 
serve only as a first estimate. If in fact the physical system 
under consideration suggested that either or both cjJ and 
C~ should be treated as random variables, or indeed 
stochastic processes, equation l8) would remain non
linear, and a closure scheme would be required. 

3.2 The _first order mome111 ec/Ulllio11s 
Applying the Ito lemma to ~quation (8). the two first 

order moment equations an: obtained as: 

l 
l 
! 
; 
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(l 3a) 

(13b) 

The first order moment or mean equations of the solu
tion processes are identical to that realized in a deter
ministic analysis. This was assured by the choice of the 
Ito interpretation of the model SOE. Solving for the 
transient case with time-independent coefficients (K;(t) 
= K; = constant) by the method of undetermined 
coefficients: 

(14a) 

C2(t) = B1em•'+B2em''+C2(00), (14b) 

where: 

B _AC (~)(i+m2-Ks) •r (mi-Ks) I - Ll l - -uL,., --- , 
m1 -Ks m 1 -m 2 - m 1 -m2 

Ks+K1 l j - - 2 - -
m1=--

2
-+2 (Ki-Ks) +4K2K•, 

Ks +Ki l j - K , - -
m1 = --

2
- - 2 (Ki - s)·+4K2K., 

~C1 = C1(0)-C1(00), 

~C2 = C2(0)-C2(00). 

(!Sa) 

(15b) 

(lSc) 

(lSd) 

(15e) 

(!Sf) 

Equations (14a and b) are of the general form of an 
exponential buildup or decay in time of concentration in 
both Cell 1 and Cell 2. 

3.3 The second order moments 
The triplet of second order moment equations are 

obtained as: 

def - 2 2 2 -2 - , --dt = (2K1 +0'1)C I +0'2C 2 + (2K2+21i.2)C1C2 

+2K3C1 +{)'~, (16a) 
-2 

dC2 2-2 - 2-2 - ,,,2 --dt = 0'4C 1 + (2Ks+O's)C 2 + (2K4 + ... 1'u)C1C 2 

+2(K6+1'~.6)C2+0'~, (16b) 

dC I c 2 - ' - ' - , - ' 
_d_t_ = (K.+Yi .• )Ci+(K2-Yi.s)Ci 

+(Ki +Ks+rf.s -yf:.)C1C2 + K.C1+KiC2 (16c) 

where : 

(Q'"')( 1( )2 -} O"T = Var { Ki}= ¥
2 

Q.,., (Var{Q. ) + Var{Qr ), 

.· ' 

( 17a) 

O"~ = Var{KJ = O"f, (17b) 

, (Q•··")( K</> )

2 

O'j = Var{K 3 } = Yi m,.r Var{m}, ( l 7c) 

, / (Qc.")( I )
2 

_ O'; = Var ,K4 } = if
2 

Q •. ,. Var{Qr}. (17d) 

2 
{ (Q""')( I )

2 

O"s = Var K 5 } = , i>'z Q., .. 

x (Var{ Qr}+ Var{ Qm) + Var{Q;} ). (l 7e) 

' { , (Q• .. r)( K )
2 

'i'i.2 = Cov K 1, Ki1 = - if
2 

Q."'' 

x(Var{Q.}+{Var{Qr}), (17g) 

(l 7h) 

Y
2 

- Cov{K K 1 
- ·•

2 
1,5 - h 'Sf - - I l.-4 t (i 7i) 

2 { , (Q•,.,·) ( I )
2 

r -r•.s = Cov K4, K51 = - if
2 

Q,.,,. Var 1Qr}, (17j) 

(17k) 

Equations (16a-c) form a triplet of simultaneous first 
order linear differential equations in the three dependent 
variables Cf, C 1C2, and Ci . 

Although in theory a general analytic solution can be 
obtained for the temporal evolution of the second order 
moments in the unsteady case, it is far more convenient 
and faster to resort to a numerical solution scheme unless 
specification of the coefficient terms results in a simplified 
equation set. 

4. EXAMINATION OF SAMPLE CASES 

The solutions obtained for the first and second order 
moment equations of the ventilation system model are 
applied in two sample cases. The effect of randomness or 
uncertainty of input-parameter values on the transient 
concentration statistics will be illustrated. 

4.1 Sample geometries 
Two ventilation systems will be modelled to dem

onstrate the flexibility of the two-zone model. The physi
cal geometries, initial conditions. and input-parameter 
statistics (mean value and variance) are outlined in 
Tables 1 and 2. 

The first system. referred to as Case I. is a "typical" 
LEV system corresponding to a laboratory exhaust hood 
situation in an average-sized room. In the second system, 
Case 2, the properties of the system have been chosen to 
be characteristic of a "laminar" cross-flow clean room. 
In both sample cases, contaminanc generation is confined 
to Cell I(</>= l). For Case I, this corresponds to a well
designed exhaust hood with a face area of A,, and for 
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Table l. Geometrics and initial condition statistics for sample 
cases (note : fT =standard deviation) 

Parameter (Units) Case 1 Case 2 

+', (m') 1.5 300 
+', (ml) 300.0 300 
A, (m') 1.5 30 
A, (m') 220.0 220 

C,(1=0) (ppm) 0 0 
C2(1 = 0) (ppm) 0 0 
11{C,(1 =OJ} (ppm) 0 0 
11{C2(1 =OJ} (ppm) 0 0 

which the only means of contaminant escape into Cell 2 
is through turbulent processes. For Case 2, Cell 1 cor
responds more generally to an "active" clean room region 
of cross-sectional area, A 1, and in which the contaminant 
generating processes are distributed. Cell 2, then, is to be 
identified as the zone of (worker) occupancy in Case I, 
and in Case 2, as an inactive secondary region in which 
no contaminants are generated, located upstream of the 
active clean room region. 

4.2 Initial conditions 
For both sample cases the initial conditions in Cell I 

and Cell 2 have been fixed at zero with zero uncertainty. 
In a more general analysis, random initial conditions 
would be characterized by specifying mean initial con
centration values and associated variances. Within the 

Table 2. Parameter statistics for sample cases (note : <1= 
standard deviation) 

Parameter (Units) Case 1 Case 2 

c,, (ppm) 0 0 
m (ml s- 1) 50 50 

<r{m} 
0.25, 0.5 0.25, 0.5 m 

</> I 1 
Qr/A, (m s- 1) 0.5 0.5 
Qr (ml s- 1) 0.75 15 

<r{Qr} 
0.5 0.5 Tr 

Q. (ml s- 1) Q,=Qr 
Qm (m's- 1) Qm = LlQr 

<r{Qm} 
0.5 0.5 

Qm 

Q; (m ' s- 1) Q; = Qm-Qr 
RMS(v;) (m s- 1) RMS(v[) = 0.04+0.2l(Qr1A,)t 
RMS(ui) (m s- 1) RMS(~i) = 0.04+0.2l(QJ A,)t 
Qr (m ' s- 1) Qr= RMS(i·;)A 1/2t 

<1{ Qr) 
0.5 0.5 Q;-

Q, (m l s- 1) Q, = RMS(v,')A,/2t 

11{Q,) 
0.5 0.5 Q;-

t [10] 

model, this corresponds mathematically to specifying 
initial values for both the first and second order moments. 

4.3 Cunlaminant source 
For illustrative purposes, gaseous ammonia emitted at 

a constant rate of 2.26 µkg mol s - 1
, or roughly 50 ml 

s - 1
, has been used for both sample cases . 

4.4 lnfi/1ration-exfi/tration processes 
For both sample cases, the Cell 2 exfiltration flows, 

Q,, were "forced" by setting the make-up or supply air 
parameters, Qm, at 110% of the exhaust flows , Q,. This 
corresponds to the situation of a positively pressurized 
workplace. More sophisticated models of the infiltration
exfiltration processes can readily be accommodated 
through specification of wind loadings and building 
porosity and pressurization characteristics. 

4.5 Characterization of the RMS turbulence levels 
Calculations of Q; and Qr for both illustrative cases 

were based on a correlation of RMS turbulence levels 
with mean air velocities from (10], for mean air velocities 
equal to or greater than 0.05 ms- 1

• Below this range, the 
RMS turbulence level was set equal to the mean value. 

4.6 Transient analysis 
· The non-dimensional transient first order moment 

equations were solved exactly using equations (14a and 
b). Solutions for the non-dimensional transient second 
order moment equations (16a--c) were obtained using a 
fifth and sixth order Runge Kutta-Verner method. The 
first order moment equations were used directly in estab
lishing mean concentrations. and the first and second 
order moment equations were used in determining the 
95% confidence intervals ( C;± 2o-{ C}) of the solution 
processes . The results of the transient analysis for the 
two sample cases are illustrated in Figs 2-11, where each 
even-numbered figure conta ins model results assuming 
uncertainty or randomness in o ne input-parameter for 
Case I (LEV system) and the succeeding odd-numbered 
figure illustrates the analogous situation in Case 2 (clean 
room). 

In each of the figures, the mean concentrations (solid 
lines) and associated 95% confidence intervals (broken 
lines) are illustrated in the upper diagram for Cell 1 and 
in the lower diagram for Cell 2. Curves with solid symbols 
are plotted against the left vertical axes scaled in dimen
sional (ppm) units, while curves with open symbols are 
plotted against the normalized non-dimensional scale of 
the right axes. Solutions are plotted against both dimen
sional time in seconds on the lower horizontal axes. and 
t*, the non-dimensional time variable on the upper hori
zontal axes. In each figure. uncertainty or randomness 
has been assumed in only a single parameter with all 
other remaining parameters assumed to be constants of 
zero uncertainty. In this fashion, the sensitivity of the 
model to fluctuations or uncertainty in a particular pa
rameter may be examined. 

The mean concentration-time evolution characteristics 
are identical in Figs 2. 4, 6. 8 and I 0 for Case 1 and Figs 
3. 5, 7, 9 and 11 for Case 2. as they are unaffected in the 
Ito-type stochastic analysis by the stochastic nature of 
the input-parameters. Examination and comparison of 
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the two sample cases' mean concentration-time curves 
indicate that while for both cases. and for both cells, 
exponential-type growth of contaminant concentrations 
are predicted, the growth rates, as indicated by time to 
reach a fixed percentage of the steady-state value. are 
different. In both cases the supply zone, or Cell I, 
approaches the steady-state contaminant level faster than 
Cell 2. In Case I, 96°/c, of the steady-state mean con
centration is attained within 400 s for Cell 1, and 1200 s 
for Cell 2. For Case 2, the comparable times are 80 and 
100 s respectively. Respective to Case I, then, Case 2 
demonstrates a faster system response to the contaminant 
source by reason of its respectively higher level of inter
cell contaminant transport processes. 

The 95% confidence bounds on the solution processes 
arise from, and are a function of, the input-parameter 
uncertainty. They represent statistical limits on knowl
edge of the system state, or the contaminant con
centrations, based on the uncertainty of the system 
inputs. 

In Figs 2 and 3 where a{riz} = 0.5m in situation A 
and rr{m} = 0.25m in situation B, the large confidence 
interval bandwidths are evidence of the highly sensitive 
relationship of the cell concentrations with the instan
taneous value of the source strength. For both cases, the 
model predicts that the supply zone, or Cell 1, con
centrations are highly scattered about the mean values. 
The confidence intervals for Cell 2 are, as expected, nar
rower than those of Cell !, but are still indicative of 
the overall sensitivity of the model predictions to source 
uncertainty. 

In Figs 4 and 5, the impact of uncertainty in the inter
cell turbulent transport processes on concentration stat
istics are illustrated, where a{Qr} = 0.5Qr- As this par
ameter represents the sole means of contaminant 
transport between the supply zone and Cell 2, the con
fidence interval bandwidth for Cell 2 is relatively broad. 
Case I also demonstrates a broad confidence interval in 
Cell!, reflecting the high sensitivity of the hood concen
tration to addition or removal of contaminant mass 
given its small volume. 

The effect of uncertainty in the turbulent exfiltration 
processes on concentration statistics are illustrated in 
Figs 6 and 7, where o-{QJ = 0.5Q;. In both cases. due to 
the relatively small scale of the exfiltration processes, any 

uncertainty associated with the instantaneous level of Q; 
has almost negligible impact on realized concentrations. 

Figures 8 and 9 illustrate model predictions with uncer
tainty in the make-up air, Qm with 11{ Qm} = 0.5Qm. In 
both cases the Cell I statistics demonstrate only marginal 
sensitivity to supply air uncertainty, while those of Cell 
2 are more significant. Comparing Figs 8 and 9 with the 
respective results for variations in Qr, it is interesting to 
note that the same order of magnitude confidence interval 
bandwidths are recorded for Cell 2 in both cases. 

The final set of transient solutions are illustrated in 
Figs 10 and 11 for uncertainty in Q., the exhaust airflow, 
where a{ Q,} = O.SQ,. In both cases, and for both cells. 
the impact of uncertainty in Q, is comparable to that of 
uncertainty in the source strength, Figs 2 and 3. This can 
be explained by considering that the role of Q, is to 
remove contaminant directly from Cell I out of the 
system, preventing any possiblity of it escaping into Cell 
2. This is analogous to a reduction in the effective source 
strength. 

5. CONCLUSIONS 

The work carried out within this study represents a 
departure from the strictly deterministic or strictly 
empirical modes of thought in ventilation research by 
recognizing that many of the factors influencing the per
formance of a ventilation system are inherently random 
or variable-or at the very least-quantifiable only with 
uncertainty, and can be treated as random variables. 

The stochastic modelling of a ventilation system pro
vides a tool whereby quantitative statistical conclusions 
concerning the system performance may be drawn 
assuming the input parameters and initial conditions 
behave as random variables . Although the proposed 
model can be further extended in a straightforward man
ner to a multi-zone model. within the confines of the two 
cell analysis there is still sufficient flexibility to charac
terize a diverse range of ventilation systems. 

Model predictions of the concentration statistics for 
two sample ventilation systems based on uncertainty of 
input-parameters have been illustrated and demonstrate 
the ability of the stochastic ventilation system model 
to provide quantitative statistical answers to practical 
design problems. 
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