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An Idealised Model for Room Radiant 
Exchange 

M. G. DA VIES" 

In order 10 ar.rive ar a simple desig11 procedure to handle heat transfer in a room, certain fairly 
complica1ed e."(pressions for radiant t-x,clrange are needed, a11d moreover tire further operations 
that have to be performed 011 them are involved and lead 10 non-exact relations. The corresponding 
operations for radia111 e,"(Clrl/11ge betwee11 patches wlricl1 form part of a spherical cavity are 
elome111ary a11d exact, a11d lttad 10 results which are q11ite close to those for a cubic enclosure. 
Titus a co11sideratio11 of ra.diolll exchange in a sphere i/luslrall!s the principle.,"{ radia111 exclwnne 
i11 a room, elegamly and witlr U11/e of its complexity. 

INTRODUCTION 

IN AN EARLIER paper, the present a\,lthor advanced 
a series of ideas relating to radiant exchange in a room. 

( 1) The 15 conductances expressing the direct exchange 
of radiation between the six black body surfaces of 
a rectangular room can be replaced by a set of 6 
conductances each linking a surface to a central 
"radiant star" node, notated as T,.. The external 
effect of the star-based system cannot be exactly equi­
valent to that of the surface-surface set, but using an 
optimal procedure based on least squares methods, 
the equivalence can be made quite close and is vir­
tually exact for a cube. 

(2) The radiant star node T,. is a fictional construct and 
longwave radiation strictly speaking cannot be input 
at it. If however the radiant output Q, from an in­
ternal heat source is taken to be input at T,., the 
temperature it generates there is a fair approximation 
to the actual space averaged observable radiant tem­
perature T .. in the room. rn fact if the source is placed 
centrally in the room, T,. is some 14% lower than 
T,v, but if the source is placed at the wall- a more 
rea listic position-the two are more nearly equal. It 
will be assumed for design purposes that the fictitious 
value T., provides an adequate estimate of the phys­
ically meaningful volume-average radiant tem­
perature Trv . 

(3) The effect of the emissivity of each surface can be 
included in the star network. The conductance link­
ing T,. to the temperature node 1j of surface J can 
then be conveniently written as Aj • Ej · h., where Aj is 
the area of the surface, Ej a dimensionless factor 
which expresses both the geometrical aspect of sur­
face Jin relation to the enclosure, and the effect of 
its emissivity; h, is around 5.7 W m- 2 K- 1 at room 
temperatures. 
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(4) It is routinely assumed that the:: convective com­
ponent Q. of the beat input from an internal hot 
body source can. be taken as input at the volume­
averaged air temperature Tm and that a convective 
conductance of type Aj · hcj links T.v to 1j . The inter­
nal exchange of heat within the room can thus be 
expressed in terms of two independent star-based 
networks, one radiative, the ot!wr convective. with 
heat being input at each of the two nodes. The author 
has described this as the "binary star model". Com· 
fort temperature T. can be expressed explicitly in this 
formulation and is taken as a node linked to T., and 
T.v by conductances which are very small compared 
with typical values of the enclosure conductances 
A1 • E1 • h, and A1 • hcJ· 

(5) A one star model, the "rad-air" model can be derived 
from the binary star model. r .. retains its function. 
T" is no longer present, but is replaced by the rad­
air node T,.; T,. is a linear function of T,, and T.w· 
There is a very large conductance between T,.. and 
T.v. The radiant input Q, from an internal source 
has now to be treated as an augmented input at T,. 
together with a withdrawal of the excess at T•v· In 
special circumstances, the rad-air and binary star 
models are exactly equivalent to each other; in 
general this will not be so, but the equivalence is 
normally expected to be sufficiently close for design 
use. 

Comfort temperature cannot be explicitly included 
in the rad-air model but it is easily calculated. If a 
single star model for room internal heat exchange is 
to be adopted, as it usually is for the purpose of 
design of heating and cooling equipment, the rad-air 
model is the logically appropriate approach. r,. is 
the indoor equivalent of the sol-air temperature r .• 
which serves to combine the effects of ambient air 
temperature and absorbed solar gain at wall exterior 
surfaces. 

Stages l-3 of this argument are concerned with radiant 
exchange alone and the first two involve some 
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cumbersome view factor expressions and the solution of 
simultaneous equations in order to arrive at an optimal 
but of course, non-exact, equivalence of the surface­
surface and surface-star point networks. It is the purpose 
of this paper to show that in the case of radiant exchange 
in a sphere, these stages can be conducted very simply 
and exactly, and that they lead to results very similar to 
those for a rectangular room. A treatment of radiant 
exchange in a sphere in fact provides a compact and 
elegant introduction to room radiant exchange. 

2. RADIANT EXCHANGE IN A SPHERICAL 
CAVITY 

We have to show how the radiant exchange between 
areas which have the form of patches on the surface of a 
spherical cavity can be expressed as an exchange via a 
central radiant star node, T,.. 

2.1. Surface-surface exchange 
Consider two such very small patches, t5A i and t5A 2. 

The view factor Fi i is the fraction of radiation leaving 
t5A i diffusely that is intercepted by t5A 2. It is routinely 
given by the expression : 

Fii =cos e I. cos Oi. t5A2/nr2, (1) 

where r denotes the distance between the areas and £J is 
the angle between the normal to the area and the direction 
of r. 

Suppose that the sphere is of radius R and that the two 
patches are situated an angular distance 2</J apart, seen 
from the centre of the sphere. In this case, £J 1 = £J 2 = 
n/2-</J, and !r = R ·sin </J. It follows that: 

Fi 2 = t5A 2/4nRi or M 2/S, (2) 

where Sis the area of a sphere, 4nRi. 
The geometrical conductance t5C 12 between the two 

patches is given as : 

t5Ci 2 = t5Ai ·F12 = t5A 2·F21 = t5A1 ·t5A2/S. (3) 

Clearly, the conductance from area 1 to a finite area 2 is 
found by summing adjacent small areas and conversely 
so the conductance between any two finite areas on a 
sphere is given by : 

Ci 2 = A 1 ·F12 = A 2 ·F21 = A 1 ·A 2/S. (4) 

The expression for the view factor is noted by Howell 
and Siegel [1]. It is very simple, comparable in simplicity 
with that for the surfaces of a long corridor as given by 
Hottel's crossed strings approach [2]. By contrast, the 
exact view factors for surfaces in a rectangular room are 
relatively complicated. The present author [3] however 
has shown that they lead to an approximate expression 
for values of Fjk in a room which has the same form as 
the value of Fjk for a sphere [i.e. equation (4)): values for 
the surface-to-star point conductances, which are 
approximately proportional to area, replace the areas 
themselves. 

The physical conductance (units, W K- 1
) between 

areas A 1 and A 2 at temperatures Ti and T2 is C12·h., 
where h, is the lfo.earised radiant heat transfer coefficient, 
around S · 7 W m - 2 K - i at room temperatures. The 
radiant flux is C 12 • h, · (T1 -T2). For the present purpose 

however, h, is a constant multiplier in all terms and it is 
sufficient to work in terms of geometrical conductances, 
(units, m 2

). 

2.2 Surface-star point exchange 
It is convenient to consider first a strict delta-to-star 

transformation of the conductances. We suppose the 
spherical surface is divided into three areas, so that 
A 1+A2+A 3 =S. A 1 is at a temperature T" etc. The 
conductance linking nodes T1 and T2 is Ci 2 = A"A 2/S, 
etc. Now the external effect of this delta arrangement of 
conductances is given exactly by the star configuration 
of conductances K 1, Ki and K 3, where Ki links T 1 to the 
radiant star node T" etc, provided that K 1 for example 
is taken as: 

K1 = (C12°C23+C23°C3i+C31·C12)/C2J· (S) 

Upon inserting value for the Cs, we find that: 

K 1 =Ai, etc, 

that is, the star conductances are simply equal to the 
patch areas. Clearly the result holds if A3 for example 
becomes zero, or if both A 2 and A 3 are zero. This suggests 
that perhaps ~ might equal Aj, regardless of how many 
areas the spherical surface is divided into. 

To demonstrate that this is indeed so, suppose that the 
sphere is divided into four discrete areas Ah A 2, A 3 and 
A 4 , at uniform temperatures T 1, T2, •.•• We wish first to 
find the resistance between nodes 1 and 2 (say), when 
nodes 3 and 4 are adiabatic. 

Suppose that a heat flow Q is injected into node 1 and 
withdrawn from node 2. By continuity at node 1, we 
have: 

C 12 ·h,· (Ti -T2)+Ci 3 ·h,· (Ti -T3) 

+Ci4·h,-(Ti-T4) = Q. (6) 

There are three similar equations which can be written 
after rearrangement as : 

[S-A, -A2 -A3 

-A, 1 r1 -Ai S-A 2 -A3 -A4 . T2 

-Ai -A2 S-A 3 -A4 TJ 

-Ai -A2 -A3 S-A4 T4 r +Q/h,)(S/A,) 1 
= (-Q/h,)(S/A2) 

(7) 
0 

0 

By definition, the net resistance (in geometrical units) 
between nodes 1 and 2 is : 

Ti-Ti 
R12=~· (8) 

T2 can be set equal to zero and so the second row and 
column of equations (7) can be deleted. After solving for 
T 1, we find: 

1 1 
R12 =Ai+ Ai . (9) 

But this is just the resistance between these nodes in a 
star based system when the star conductances Ki and K1 
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are A 1 and A 2 respectively. Thus the surface-star network 
is exactly equivalent in its external effect to the parent 
surface-surface network. Clearly, this applies to any two 
nodes when the spherical surface is divided into four 
portions, and a similar argument shows this to be the 
case when the sphere is divided into five or more portions. 

This result contrasts with the case for an enclosure 
with plane surfaces. The radiant exchange in an enclosure 
composed of four or more plane surfaces cannot be rep­
resented exactly by a star pattern of conductances. The 
present author has shown [4] that radiant exchange in a 
rectangular enclosure can in fact be closely modelled by 
a star based system - for a cubic enclosure the rep­
resentation is almost exact-but the demonstration 
involves some computational labour. 

3. THE SURFACE CONDUCTANCE fJ VALVES 

In [4] the author defined a quantity pj for a black body 
surface of area Aj in a rectangular enclosure where: 

conductance from the surface to a 
p. = large enclosing black body surface 

1 conductance from the surface to the' (IO) 
enclosure radiant star node 

so that the star conductance has a value Aj/pj. It appeared 
from tests on a wide variety of enclosure shapes that 
Pj could be expressed closely as a function of the area 
concerned in relation to the total enclosure area. We 
define: 

summing over all the enclosure surfaces. Then: 

(Jj ~ l-fj-3.53(jf2-4jj)+5.04(.fj3-Vj), (11) 

with a standard deviation of 0.0067 (a small value since 
{J1 values lie between -! and 1 ). (Jj is mainly estimated as 
1 - fj; the further terms represent only a small deviation 
from this relation. 

(J1 values can similarly be found for spherical surfaces. 
Consider for convenience a patch on a sphere having the 
form of a circular cap of area Aj whose diameter subtends 
an angle 2</J at the centre of the sphere. Its conductance 
to the radiant star node is A1, as shown above. However, 
as far as radiation is concerned the effective area of emis­
sion is not A1 itself, but a reduced area A} say-the area 
in fact of a plane membrane stretched across its 
perimeter. See [2], p. 66. The radiation to a large enclosing 
surface is proportional to A). The (J1 value for A1is accord­
ingly: 

(Jj =Alf Aj. 

From the geometry of the sphere, we find: 

(J1 =W+cos</J), 

Similarly: 

Jj = Aj/S = W-cos </J). 

Thus for a sphere we have the exact relation : 

(12) 

(13) 

(14) 

(15) 

This form amounts to being an idealisation of the relation 
for a rectangular enclosure. 

4. THE AVERAGE OBSERVABLE 
TEMPERATURE 

The radiant star node is a convenient fiction and has no 
physical significance ; it is meaningless to input radiation 
there. However, if a radiant flux Q, is taken to act there, 
and the spherical surface is taken to be at zero, its tem­
perature is given by: 

Trs = Q,/(S·h,). (16) 

To arrive at a physically meaningful temperature, sup­
pose that the radiant input is supplied by a small source 
placed at the centre of the sphere, and that its effect is 
sensed by a small black body spherical probe, of diameter 
d, distant r from the centre of the sphere. The area of the 
probe intercepting radiation from the source is (l/4)nd2 

and the area radiating to the sphere is nd2
• Heat balance 

at the probe then indicates its temperature to be: 

Trp = Q,/(16nr 2 
• h,). (17) 

T rp varies from a high value near the source to a low 
value at the sphere. Its average value T rv over the volume 
of the sphere is found as: 

(18) 

integrating over the radius of the sphere. The appropriate 
element of volumed Vis here equal to 4nr2 

• dr. We find: 

Trv = (3/4)· Q,/(S·h,). (19) 

A comparison of equations (16) and (19) shows that the 
average observable temperature Trv is 25% lower than 
the value obtained by assuming that the heat is input at 
the radiant star temperature T,. in a sphere. 

The author has examined this point for a rectangular 
enclosure: for a cubic enclosure, Trv/Trs = 0.915/ 
0.833 = 1.098 (see [4], Tables 3 and 5, with some 
changes in notation), so that T rv is some 10% higher than 
Trs in a cube. There is thus an apparent conflict 
between the values of Trv/Trs for a sphere and a cube. 
This is discussed in the following section. 

5. COMPARISON OF VALVES FOR 
SPHERICAL AND CUBIC ENCLOSURES 

A study of radiation within a sphere is only of interest 
insofar as it helps to make clear the case of radiant 
exchange in a room. Clearly, the rectangular room closest 
in shape to a sphere is a cube, possibly having the same 
volume, and in this section we estimate the values of T rv 

and of Trs for a cube as estimated from the values for a 
sphere. They can then be compared with the directly 
computed values for a cube. 
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5.1. The value ofT,. 
The value of T.., for a sphere is 0.75 · (Q,/h,)/(area of a 

sphere). For a cube of side l having the same volume as 
a sphere of radius R; 

area of cube 
----- = 2 x (3/411:) 113 = 1.241. 
area of sphere 

So : 

, T'"(sphere) = 0. 75 x 1.241 (Q,/h,)/ 

(area of cube of same volume) 

= 0.931 x (Q,/h,)/(area of cube). (20) 

5.2. The value of T,,, 
The value of T,. for a sphere is 1.0 x (Q,/h,)/(area of 

sphere). Now we have already noted that the radiation 
from a black body cavity is not proportional to its area 
but rather to the area of a plane membrane stretched 
across its mouth. Suppose thac from the sphere we slice 
off six segmental shells with circular peripheries, of such 
a size thal each just touches four of the others, and we 
replace the circular holes by plane surfaces so as to leave 
the sphere looking like a partial cube. This leaves the 
conductances between the areas concerned unaltered, but 
the area.of the partial cube is less than that of the sphere. 
It is easily shown that : 

area of partial cube 
area of sphere 

_ 4nR 2 -6 x (2-,fi)nR 2 +6 x {nR 2 

-
4

nR1 = 0.871. (21) 

So : 

T,, = 1.0 x 0.871 x (Q,/h,)/(area of partial cube). 

5.3. Comparison of values 
The values for Trv and of T,. for a cube are given by 

the l/h = d/h = 1 entries in Tables 5 and 3- of [4] and 
those for sphere, related as far as possible to a cube­
sbaped volume are given above. They are listed for com­
parison below. 

T..,(cube) 
= 0.915(Q,/h,)/area 

T ..,(sphere) 
= 0.931 (Q,/h,)/area 

T,,(cube) 
= 0.833(Q,/h,)/area 

T,.(sphere) 
= 0.871 (Q,/h,)/area. 

Thus the values for T,. are close; there is no reason 
why they should be exactly equal. The T,. values too are 
close but again we do not expect them to be the same. In 
each case, the sphere values exceed the cube values a 
little. 

6. DISCUSSION 

lt is known that the exchange of radiation between 
the surfaces of a rectangular enclosure does not depend 
strongly upon the shape of the enclosure and it might be 
expected that radiam exchange would not be too much 
affected by whatever shape within broad limits the enclo­
sure had: tbe important requirement is that the surfaces 
form a closed con6guration. This note has demonstrated 
that radiation exchange in the simplest of all closed con­
figurations-a spherical cavity-is very easy to handle 
and is free from the algebraic and computational com­
plexity of exchange in a rectangular room. Specifically 
the view factor relationship for patches on a spherical 
surface is elementary, and so the expression for the sur­
face to surface conductances. IL turns out that the pattern 
of surface-lo-surface conductances transforms exactly to 
a surface-to-star point configuration, regardless of how 
many areas the spherical surface is divided into. This 
eliminates the 'least squares" procedure that had to be 
adopted in [4] to size the surface-to-star point con­
ductances in a rectangular room. Furthermore, it is very 
easy lo compute the average observable radiant tem­
perature in a spherical cavity when the radiant source is 
placed at the centre; this calculation is very much more 
involved for a rectangular room. 

The other considerations mentioned in the Intro­
duction relating to surface emissivity, air temperature, 
comfort temperature and the evolution of a room global 
temperature-rad-air temperature-would be, if pur­
sued, the same for a sphere as for a room. Despite the 
aritificiality of the sphere as building model, the author 
feels that it provides an effective way for an initial pre­
sentation of the theory of radJant exchange in a room. 
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