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ABSTRACT 

In practically all HVAC systems, the maintenance of 
process setpoints relies on feedback loop control. Propor
tional, integral, and derivative (PID) algorithms are often 
used in these controllers. The optimization of such loops has 
been the subject of many studies, most of which use tech
niques to first model the dynamic behavior of the process 
and then to use the model to arrive at a series of control 
constants that would effect a.first-order response to changes 
in setpoint. This paper demonstrates how artificial neural 
networks (ANNs) can be used for the same purpose and 
compares the performance of two types of ANN controllers 
to a conventional PID controller. 

INTRODUCTION 

The advent of the personal computer has had a pro
found impact on the way in which building systems are 
controlled. Direct digital controllers and energy manage
ment systems rely on microprocessors to implement 
increasingly complex control strategies that can take 
advantage of the speed and precision of electronic controls. 
It follows, therefore, that stand-alone electronic controllers 
are used to autotune control constants or adapt to changing 
process conditions. 

The subject of optimization of feedback loops is 
certainly not new, and m:uch study has been devoted to the 
modeling techniques used to identify dynamic system 
response. Radke and Isermann (1987) and MacArthur et al. 
(1989) show how autoregressive moving average (ARMA) 
algorithms are used to arrive at parameters for linear 
discrete-time process models. Many permutations of these 
models are possible; for example, Zaheer-uddin (1990) 
combines an ARMA method with a energy balance on a 
zone. The resulting parameters can then be used to find the 
theoretical optimum control values, either through pole-zero 
cancellation or root placement in the characteristic equation, 
as shown by Wallenborg (1991). The computational 
requirement of many of these techniques precludes the use 
of pneumatic controllers and has instead given rise to 

computer-based analysis of the processes. 
Meanwhile, in another realm of the computer age, the 

subject of artificial intelligence has been receiving consider
able attention. In particular, the use of neural networks is 
proliferating with remarkable speed. These networks are an 
attempt to recreate simple biological networks by joining 
together "cells" (or nodes) in a cascaded fashion, all richly 
connected to each other. When a given set of cells (the 
inputs) are stimulated, the signals are passed through the 
network from node to node and finally exit the network 
through another set of specified nodes (the outputs). Any 
given node accepts input from a number of other nodes, 
then outputs a signal based on the sum of all the inputs. 
Each node is connected to other nodes through a series of 

. weighting factors by which its output signals can be 
amplified or attenuated. The trick to "training" a network 
is to find weights such that a given set of inputs causes the 
network to yield the desired output. One such learning 
algorithm is called back-propagation, whereby the weights 
are adjusted to reduce the error between the actual and 
desired outputs of the network. Detailed descriptions of 
different network configurations and training techniques are 
given in Rumelhart and McClelland (1986) and Wasserman 
(1989) among many others. 

Neural networks behave very much like nonlinear 
regressions with their ability to associate specific input and 
output patterns. When used as predictors with an HV AC 
process, for example, ANNs can provide the basis for 
predictive controllers. It is also possible to use a network 
teaching formalism, in parallel with a predictor, to actually 
control a system. Much of the literature on ANN controllers 
relies on the use of computer models to simulate a process. 
Nguyen and Widrow (1989) have successfully demonstrated 
the use of the controller/emulator method to position a 
trailer truck, while Anderson (1989) has used a similar 
technique to control inverted pendulums (e.g., balancing a 
broom on the palm of your hand). Helferty et al. (1989) 
have shown how an ANN controller would be used to 
maintain the balance of a one-legged hopping robot. 

This paper discusses the results from a computer 
simulation that used ANNs for predictive control of a hot 

Peter S. Curtiss is a postdoctoral fellow at the University of Colorado, Boulder, and at the Ecole des Mines de Paris. Jan F. Kreider 
is a professor and director and Michael J. Brandemuehl is an assistant professor in the Joint Center for Energy Management, CEAE 
Department, University of Colorado, Boulder. I 
11-119 PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 1993, V. 99, Pt. 1. Not to be reprinted in whole or in par1 
without written permission of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1791 Tullie Circle, NE, Atlanta, GA 30329. Opinions, 
findings, conch . .!SiOl'lS, or r.ecommendalions express~ in this paper are lhose ot the author(s} and do not necessarily reflect the views of ASHRAE. Written questions 
end comments regarding lhis paper should be received al ASHRAE no laler than February 3, 1993. 



water coil used to warm an airstream. The coil model itself 
is a neural network that has been trained on actual data and 
mimics the nonlinearities of the coil well. 

PHYSICAL SYSTEM USED FOR ANALYSIS 

The experiments were conducted at the Joint Center for 
Energy Management HV AC Systems and Controls laborato
ry. This facility is a full-scale representation of a commer
cial HV AC system with four separate zones. Loads are 
introduced into each zone using a series of hot and chilled
water coils and steam injectors. The control process under 
examination is a hot water coil in one of the zones used to 
generate cooling loads. A schematic of the system is shown 
in Figure 1, where the load is calculated from 

(1) 

where M.u, is the mass flow rate of the air, cP·'"' is the 
specific heat of air, and l:..Ta1, is the temperature rise of the 
airstream. This load is used as the feedback signal to 
control the valve so as to maintain a specific load setpoint. 
The system is truly dynamic in the sense that the airflow 
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Figure 1 Schematic of hot water coil used in experi
ments. 

TABLE 1 
Sensor Input Ranges for Heating Coil 

process input data history range 

valve actuator control 20 time steps 0 - 100% full scale 

cooling load 20 time steps 0-100 MBTUH 

entering air temperature 10 time steps 40 - 90"F 

air flow rate 10 time steps 0- 4000 CFM 

hot water temperature 10 time steps 50 - 150"F 

hot water branch flow rate 10 time steps 0-20 GPM 

2_ 

rate and inlet air temperatures can vary considerably during 
normal operation. Additional inputs to the process include 
the hot water temperature and flow rate. 

Normal PID control of this process has not been very 
successful, since the controller, feedback, and auxiliary 
inputs vary across a wide range of values. Different 
airflows or water temperatures will affect the coil time 
constant and hence the "speed" at which this process needs 
to be controlled. Furthermore, the VA V box that controls 
the temperature of this zone will respond to any changes in 
the load by varying the airflow rate and/or the temperature 
of the air supplied to the zone. It has been observed that for 
a givt::n st::l uf PID l:Unslants tht:: pIUl:t:lSS will bt: wiut:r 
adequate control under certain conditions and very much out 
of control under other conditions. 

MODELING OF COIL USING A NEURAL NETWORK 

The remainder of this paper will discuss how a neural 
network controller can be used to properly invoke several 
process setpoint changes. A computer simulation will model 
the process to ensure that the dynamic response is consistent 
for all the cases. The computer model is itself a neural 
network that has been trained using data from a wide range 
of coil operating conditions. The network was configured to 
accept a time history of each input. A list of these inputs 
and their effective range used in the normalization of the 
input is given in Table 1. 

Several different network architectures were tested for 
their ability to correctly model this process. It was discov
ered that a standard, feedforward network using the delta 
rule back-propagation learning algorithm (Wasserman 1989; 
Rumelhart and McClelland 1986) provided a fast and 
accurate model. In this network, the input layer consisted 
of a time history of the valve position and the load, as well 
as four other channels. The output of the network was a 
prediction of the load at the next time step. A schematic of 
this network is given in Figure 2. 

To check the accuracy of the model, the actual process 
was put through a series of setpoint step changes similar to 
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Figure 2 Architecture of ANN predictor. 
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those used in the controller comparisons. The process (i.e., 
the coil load) is initially set to 20 MBtu/h and allowed to 
reach stability. After 20 minutes, the setpoint is changed to 
40 MBtu/h and remains there for 20 minutes, at which time 
the setpoint is increased to 60 MBtu/h. Finally, after 20 
more minutes, the setpoint is reduced to 40 MBtu/h. The 
PID constants used for the actual control of this process are 
a gain of KP = 0.5, a reset time T, = 200 seconds, and a 
derivative time Td = 50 seconds, with a scan rate of 
approximately 12.3 seconds. The actual response is shown 
in Figure 3. These control constants were chosen by trial 
and error as the best compromise for decent control across 
the range of operating conditions. 

Once trained, the network was tested to see if it could 
match these results. The network was initialized with the 
appropriate values, then allowed to predict the process 
output at each time step. The prediction process was 
recursive in the sense that the output of the network was 
used as the input for the load at the next time step. This 
gave the results shown in Figure 4 and demonstrated the 
ability of a network to accurately predict such a process in 
real time. Notice, however, the depressions in the predicted 
process values at 100 and 1300 seconds and the slight 
increase at 2500 seconds. These sudden changes are related 

to the actuator motion at these times, which, in tum, is 
responding to the setpoint changes (refer to Figure 3). 

These mild perturbations occur because the network is 
attempting to model a reverse acting process-as the 
actuator position increases, the process will decrease. In 
general, the network performs well at mapping this inverse 
relationship, but when there is rapid actuator motion, the 
network briefly allows the process to follow this motion. At 
first glance this would not appear to be a serious problem, 
but as it turns out, for use in predictive control this can be 
catastrophic. 

In order to understand why even such a slight degree 
of inaccuracy is unacceptable, we need to examine how the 
predictive network operates. At any given time, the ANN 
controller will predict how the process will behave over 
some finite number of time steps into the future. Back 
propagation is then used to adjust the controller output so 
as to minimize the process error (i.e., the difference 
between the setpoint and the process output value) at this 
future time. If the time window is long enough so that these 
brief mistakes by the predicting network are passed by, then 
there is no problem. In the case of a shorter time window, 
however, any mistakes in the prediction will be propagated 
back through the controller and can drive the actuator into 
a clamped output at the wrong side. Figure 5 shows the 
open-loop response of the same network used to generate 

the results in Figure 4. Here the actuator is initially set at 
85 % and the system is allowed to reach stability. When the 
actuator position is decreased to 75 % , we see the expected 
rise in the process value, and when the actuator is increased 
to 90 % , the process decreases. But we can also see the 
short-term transient network error as it demonstrates a 
direct action response before correcting itself. For the initial 
decrease of actuator position, the network yields a low 
prediction for 12 time steps (approximately 150 seconds). 
If the controller prediction window was less than two and 
a half minutes into the future, then any final prediction 
error might tell the controller that the process is direct 
acting. This would lead to completely inaccurate control. 

In order to compensate for these problems, another 
richly connected network was trained but this time with 
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selectively constrained weights. All the weights between the 
input nodes corresponding to the valve position and the first 
hidden layer were restricted to negative numbers. Thus the 
process model is forced to emulate a reverse-acting process. 
In addition, all the weights between the input nodes corre
sponding to the history of the process outputs and the nodes 
in the first hidden layer were forced to be non-nei:ative, 
This approach was ultimately successful in finding a set of 
weights that produced a realistic process model. 

Now that a model has been found that can emulate the 
heating coil with sufficient accuracy, we can compare 
different methods of controlling the process. For these 
comparisons, the model is used to simulate a one-hour test 
during which the feedback loop undergoes three different 
setpoint changes. These simulations closely follow the data 
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Figure 6 PID controller with gain of 0.1. 
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Figure 8 PID controller with gain of 1. 0. 

set used for model comparison in the previous section. In 
all cases the model is allowed to reach steady state before 
any perturbations are introduced. 

PERFORMANCE OF CONVENTIONAL 
PIO CONTROLLER 

A standard PID controller was initially simulated to 
establish some basis for comparison of the methods. The 
reset and derivative times were held constant at 250 and 50 
seconds, while the proportional term was varied. Figures 6 
through 8 show the results when the gain is 0.1, 0.5, and 
1. 0, respectively. All of these systems demonstrate stability, 
although at the lowest gain the response is too sluggish and 
at the higher two gains there is considerable overshoot at 
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Figure 7 PID controller with gain of 0.5. 
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the initial setpoint change. Figure 9 shows the same PID 
model as used above using a gain of2.0. Here we see some 
of the nonlinear behavior of the coil-at low setpoints the 
feedback loop is stable and converging, while at the higher 
setpoint the process exhibits critically damped oscillatory 
behavior. At gains higher than this, the system becomes 
oscillatory unstable. 

Table 2 shows the RMS error taken over each of these 
tests. This value is calculated from 

N 

EaMs = 
:E (SETPOINT I - PROCESS I )2 

r=l 

(2) 

N 

where N is the total number of time steps per run. The 
RMS error is used as a statistical basis of comparison with 
the ANN controllers. Notice that due to the inherent lag 
time in the system, it is impossible for the RMS error to 
ever equal zero. 

TABLE 2 
Error from PIO Control Tests 

I Proportional Gain I Normalized RMS Error I 
0.1 10.43 

05 7.68 

1.0 6.63 

2.0 7.08 

ARCHITECTURE OF PREDICTIVE CONTROLLER 

The basic premise behind predictive control is that the 
controller guesses at an appropriate output then "looks 
ahead" to see how this output will affect the process in the 
future. At each time step, the controller is readjusted and 
the prediction is repeated to see where the process will be 
at some future point. The output value that puts the process 
closest to the setpoint is chosen and sent to the actuator. 
This technique has been successfully employed by Kuper
stein and Rubinstein (1989) and Liu et al. (1989) for their 
experiments in robot hand control. 

It would be computationally intensive and time consum
ing for the controller to test every possible output. Indeed, 
since there can be a wide variety of inputs into the system 
and since the system may be experiencing non-steady-state 
conditions, the prediction of the error over the full range of 
actuator motion could conceivably take longer than the 
sampling period itself, making the controller useless for 
real-time applications. It is desirable, therefore, to find 
some way that the proper actuator position could be 
determined rapidly. The back-propagation algorithm 
developed for neural networks is a likely candidate for such 
a speed search, whereby the entire prediction and error 
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Figure 10 ANN-based predictive controller. 

calculation process is treated as an activation function in a 
simple network. The proposed scheme thus involves a dual 
ANN controller: one to perform the actual prediction of the 
process and the other to find the correct controller output 
based upon the error derived by the first network. Lan 
(1989), Chen (1990), and Psaltis et al. (1988) have all 
shown that controllers with this kind of architecture function 
remarkably well. A typical schematic of this controller is 
shown in Figure 10, where the boxes labeled E represent 
the emulator (predicting) network. After data are received 
by the controller at time k = 0, the emulator will predict 
the behavior of the process for n time steps, ending at some 
future time k = nT,, where T, is the sampling period. The 
controller then takes the process value at this future time, 
calculates the error, then back-propagates the error through 
the network to modify the controller output. The new output 
is sent, and the controller then waits for the next set of data 
at time t = k + 1, predicts the output at t = (n + 1)7;, 
back-propagates the error, and so on. Note that the error is 
not sent to each controller module as shown in the diagram 
but rather is returned through the emulator networks. In this 
sense, the entire controller can be regarded as a large ANN 
with many hidden layers (two per time step), which uses 
standard back propagation to arrive at a desired weight 
corresponding to the controller motion. 

. In the truck backer-upper problem (Nguyen and 
Wtdrow 1990), the final position of the truck was calculated 
for each change in the steering signal. The final position 
was dictated by simulating the truck movement until it hit 
something, for example, a loading dock. In this problem, 
there were well-defined bounds placed on how far ahead in 
the future the emulator needed to predict. In our case, 
however, there are no definite limits. The emulator network 
needs to have some constraint on how far ahead it looks, 
preferably some duration longer than the time constant of 
the entire feedback loop. 

The key to this method is that the controller be able to 
accurately predict on its own, starting from some initial 
conditions, i.e., the network behaves like a Hopfield 
network where the output is fed directly back into the input 
over the duration of the time window used in the prediction. 
This is an important feature, since if the network does not 
predict the process accurately, there is no guarantee that the 
process will reach a stable control. 
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position. 

It should be possible for the ANN controller to incor
porate an internal algorithm that would allow it to determine 
the optimal window size without user intervention. Figure 
11 shows an open-loop step response of the process mod
eled above. The 70 % , 90 % , and 95 % rise times are shown 
along with the corresponding number of time steps required 
to reach these values. Also clearly shown is the dead time 
of the process. It is left for future research to examine the 
correct rise time to use in order to ensure a stable and 
accurate response of the process to a step change. It can be 
seen, however, that the 70% rise time (i .e., the ln(2) time 
constant) requires 14.3 time steps. The neural network 
controllers discussed below will all be tested using a 15-
time-step window. 

PERFORMANCE OF LOOK-AHEAD 
NETWORK CONTROLLER 

Any neural-network-based controller will be useful only 
if it can perform better than the PID controller shown 
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Figure 12 FANN with learning rate of 0.5. 

above. The first kind of ANN controller involves the 
predictive technique discussed in the previous section. Here 
the network was allowed to predict where the process would 
be at some time in the future, and any error was back
propagated through the model in order to change the 
actuator output. This future predicting network is denoted 
by the acronym FANN. The learning rate of the controller 
was varied between 0.5 and 10 while the window size was 
kept constant at 15 time steps (roughly three minutes). 
Figures 12 through 15 show the results. 

Figure 13 gives the results for a learning rate of one. 
Here we see excellent control-minimal overshoot and 
quil:k response to the setpoint changes. As the learning rate 
increases, the network controller deteriorates into unusable 
control. Notice that the feedback loop never becomes 
unstable per se, but rather that the actuator begins to 
oscillate excessively. This can be explained by the predic
tive quality of the controller: any actuator motion will cause 
the process to change at some point in the future. The 
predictor finds this value, calculates the future error, then 
back-propagates that error through the network, ultimately 
changing the actuator position by an amount proportional to 
1?e ~earning rate. Any mistake by the controller in posi
borung the actuator will cause additional future error. As 
the learning rate grows much larger, it becomes almost 
impossible for the network to find the correct value; rather, 
the network keeps overshooting and correcting. 

The RMS error for the FANN network are given in 
Table 3. Notice that although the FANN controller appears 
to be better than the PID controller in the graphs, statistical
ly speaking the PID controller with a gain of 1.0 is still 
slightly better than any of the FANN controllers using the 
domain of learning rates and time windows tested. 
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Table 3 Normalized RMS error for ANN controllers 

I learning rate II FANN I 
05 7.29 

1.0 6.90 

5.0 6.81 

10.0 8.09 

PERFORMANCE OF INTEGRATING 
ERROR NETWORK 

JANN 

8.49 

7.61 

6.55 

6.43 

I 

The FANN controller works by looking at only a single 
error in lhe process at some point in the future. Since the 
process is continuous and it is desirable to minimize 
overshoot, an integrating ANN (IANN) controller was 
considered. This controller works on the same principles as 
the FANN controller but talces the RMS process error over 
the window and uses that in the back propagation. 

The effects of the learning rate were also studied for 
the IANN. Here, as with the FANN, the window is 
maintained at 15 time steps and the learning rate is varied 
between 0.5 and 10. In truth, however, it is not fair to 
compare the learning rates between the two methods. The 
reason is that in the FANN only one error was used for the 
comparison, while in the IANN a number of errors equal to 
the size of the window are used. Since any change of 
actuator position is directly proportional to this error, it is 
conceivable that an effective learning rate for a FANN 
network would not work for an IANN controller, and vice 
versa. Nonetheless, in our example, it does not appear to 
make much of a difference. Figures 16 through 19 show the 
effect of an increasing learning rate. Note that at a learning 
rate of 10, the IANN controller yields excellent control, 
whereas this same learning rate for the FANN controller 
made the process erratic. Results from these tests are given 
in Table 3. 

CONCLUSIONS 

The goal of this research was to see if neural networks 
could be used for adaptive and predictive control of a 
building systems process. The controller is adaptive in the 
sense that the output of the network used to model the 
process reflects the changing operating environment, and it 
is predictive since it examines the future effect of the 
current controller action. TI1ese features were demonstrated 
using computer simulations. As seen in Table 3, the IANN 
controller was able to minimize the process error better 
than the PID constants currently used to control this 
process. As this paper was being finalized, these experi
m~nts were repeated in a real-world, on-line application 
with success. The computer used as the ANN controller has 
the computational power of a slow AT-class machine, and 

yet was able to perform both FINN and IANN control 
within a 10-second scan rate. 

The application of neural network controllers would 
seem to have promise for use in feedback loop processes. 
Both the future error and integrating ANN controllers have 
the potential to outperform the standard PID algorithm. 
Furthermore, the degrees of freedom have been reduced 
w~th rega~d to the conventional PID controller-only the 
wmdow size and learning rate need to be specified as 
opposed to the three PID gains. It would also appear that 
the ANN controllers could find their own window size 
without additional user input. 

REFERENCES 

Anderson, C. 1989. Learning to control an inverted pendu
lum using neural networks. IEEE Control Systems, 
April, pp. 31-36. 

Chen, F. 1990. Back-propagation neural networks for 
nonlinear self-tuning adaptive control. IEEE Control 
Systems, April, pp. 44-48. 

Helferty, J.J., J.B. Collins, L.C. Wong, and M. Kam. 
1989. A learning strategy for the control of a one
legged hopping robot. Proceedings of the 1989 Ameri
can Control Conference: 896-901. 

Kuperstein, M., and J. Rubinstein. 1989. Implementation 
of an adaptive neural network controller for sensory
motor coordination. IEEE Control Systems, April, pp. 
25-30. 

Lan, M. 1989. Adaptive control of unknown dynamical 
. systems via neural network approach. Proceedings of 

the 1989 American Control Conference: 910-915. 
Liu, H., T. Iderall, and G. Bekey. 1989. Neural network 

architecture for robot hand control. IEEE Control 
Systems, April, pp. 38-41. 

MacArthur, J.W., E.W. Grald, and A.F. Konar. 1989. An 
effective approach for dynamically compensated 
adaptive control. ASHRAE Transactions 95(2): 415-
423. 

Nguyen, D.H., and B. Widrow. 1989. The truck backer
upper: An example of self learning in neural networks. 
Proceedings of the International Joint Conference on 
Neural Networks 2: 357-363. 

Nguyen, D.H., and B. Widrow. 1990. Neural networks for 
self-learning control systems. IEEE Control Systems, 
April, pp. 18-23. 

Psaltis, D., A. Sideris, and A. Yamamura. 1988. A 
multilayered neural network controller. IEEE Control 
Systems, April, pp. 17-21. 

Radke, F., and R. Isermann. 1987. A parameter-adaptive 
PID-controller with stepwide parameter optimization. 
Automatica 23: 449-457. 

Rumelhart, D.E., and J.L. McClelland. 1986. Parallel 
distributed processing: Explorations in the microstruc
ture of cognitio11. Cambridge, MA: MIT Press. 

Wallenborg, A.O. 1991. A new self-tuning controller for 
HY AC systems. ASHRAE Transactions 97(1): 19-25. 



• 

Wasserman, P.D. 1989. Neural computing: Theory and 
practice. New York: Van Nostrand Reinhold. 

9 

Zaheer-uddin, M. 1990. Combined energy balance and 
recursive least squares method for the identification of 
system parameters. ASHRAE Transactions 96(2): 239-
244. 




