
3671

ADAPTIVE CONTROL OF
HV AC PROCESSES USING
PREDICTIVE NEURAL NETWORKS

P.S. Curtiss, Ph.D. J.F. Kreider, Ph.D., P.E.
Member ASHRAE

M.J. Brandemuehl, Ph.D., P.E.
Member ASHRAE

ABSTRACT

In practically all HVAC systems, the maintenance of
process setpoints relies on feedback loop control. Propor
tional, integral, and derivative (PID) algorithms are often
used in these controllers. The optimization of such loops has
been the subject of many studies, most of which use tech
niques to first model the dynamic behavior of the process
and then to use the model to arrive at a series of control
constants that would effect a.first-order response to changes
in setpoint. This paper demonstrates how artificial neural
networks (ANNs) can be used for the same purpose and
compares the performance of two types of ANN controllers
to a conventional PID controller.

INTRODUCTION

The advent of the personal computer has had a pro
found impact on the way in which building systems are
controlled. Direct digital controllers and energy manage
ment systems rely on microprocessors to implement
increasingly complex control strategies that can take
advantage of the speed and precision of electronic controls.
It follows, therefore, that stand-alone electronic controllers
are used to autotune control constants or adapt to changing
process conditions.

The subject of optimization of feedback loops is
certainly not new, and m:uch study has been devoted to the
modeling techniques used to identify dynamic system
response. Radke and Isermann (1987) and MacArthur et al.
(1989) show how autoregressive moving average (ARMA)
algorithms are used to arrive at parameters for linear
discrete-time process models. Many permutations of these
models are possible; for example, Zaheer-uddin (1990)
combines an ARMA method with a energy balance on a
zone. The resulting parameters can then be used to find the
theoretical optimum control values, either through pole-zero
cancellation or root placement in the characteristic equation,
as shown by Wallenborg (1991). The computational
requirement of many of these techniques precludes the use
of pneumatic controllers and has instead given rise to

computer-based analysis of the processes.
Meanwhile, in another realm of the computer age, the

subject of artificial intelligence has been receiving consider
able attention. In particular, the use of neural networks is
proliferating with remarkable speed. These networks are an
attempt to recreate simple biological networks by joining
together "cells" (or nodes) in a cascaded fashion, all richly
connected to each other. When a given set of cells (the
inputs) are stimulated, the signals are passed through the
network from node to node and finally exit the network
through another set of specified nodes (the outputs). Any
given node accepts input from a number of other nodes,
then outputs a signal based on the sum of all the inputs.
Each node is connected to other nodes through a series of

. weighting factors by which its output signals can be
amplified or attenuated. The trick to "training" a network
is to find weights such that a given set of inputs causes the
network to yield the desired output. One such learning
algorithm is called back-propagation, whereby the weights
are adjusted to reduce the error between the actual and
desired outputs of the network. Detailed descriptions of
different network configurations and training techniques are
given in Rumelhart and McClelland (1986) and Wasserman
(1989) among many others.

Neural networks behave very much like nonlinear
regressions with their ability to associate specific input and
output patterns. When used as predictors with an HV AC
process, for example, ANNs can provide the basis for
predictive controllers. It is also possible to use a network
teaching formalism, in parallel with a predictor, to actually
control a system. Much of the literature on ANN controllers
relies on the use of computer models to simulate a process.
Nguyen and Widrow (1989) have successfully demonstrated
the use of the controller/emulator method to position a
trailer truck, while Anderson (1989) has used a similar
technique to control inverted pendulums (e.g., balancing a
broom on the palm of your hand). Helferty et al. (1989)
have shown how an ANN controller would be used to
maintain the balance of a one-legged hopping robot.

This paper discusses the results from a computer
simulation that used ANNs for predictive control of a hot

Peter S. Curtiss is a postdoctoral fellow at the University of Colorado, Boulder, and at the Ecole des Mines de Paris. Jan F. Kreider
is a professor and director and Michael J. Brandemuehl is an assistant professor in the Joint Center for Energy Management, CEAE
Department, University of Colorado, Boulder. I
11-119 PREPRINT IS FOR DISCUSSION PURPOSES ONLY, FOR INCLUSION IN ASHRAE TRANSACTIONS 1993, V. 99, Pt. 1. Not to be reprinted in whole or in par1
without written permission of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1791 Tullie Circle, NE, Atlanta, GA 30329. Opinions,
findings, conch . .!SiOl'lS, or r.ecommendalions express~ in this paper are lhose ot the author(s} and do not necessarily reflect the views of ASHRAE. Written questions
end comments regarding lhis paper should be received al ASHRAE no laler than February 3, 1993.

water coil used to warm an airstream. The coil model itself
is a neural network that has been trained on actual data and
mimics the nonlinearities of the coil well.

PHYSICAL SYSTEM USED FOR ANALYSIS

The experiments were conducted at the Joint Center for
Energy Management HV AC Systems and Controls laborato
ry. This facility is a full-scale representation of a commer
cial HV AC system with four separate zones. Loads are
introduced into each zone using a series of hot and chilled
water coils and steam injectors. The control process under
examination is a hot water coil in one of the zones used to
generate cooling loads. A schematic of the system is shown
in Figure 1, where the load is calculated from

(1)

where M.u, is the mass flow rate of the air, cP·'"' is the
specific heat of air, and l:..Ta1, is the temperature rise of the
airstream. This load is used as the feedback signal to
control the valve so as to maintain a specific load setpoint.
The system is truly dynamic in the sense that the airflow

AIR FLOW

RATE

HV RETURN

-
HV SUPPLY

-

IllLET AIR

TEllPERATllRE

OUTLET AIR

TEllPERATURE

Figure 1 Schematic of hot water coil used in experi
ments.

TABLE 1
Sensor Input Ranges for Heating Coil

process input data history range

valve actuator control 20 time steps 0 - 100% full scale

cooling load 20 time steps 0-100 MBTUH

entering air temperature 10 time steps 40 - 90"F

air flow rate 10 time steps 0- 4000 CFM

hot water temperature 10 time steps 50 - 150"F

hot water branch flow rate 10 time steps 0-20 GPM

2_

rate and inlet air temperatures can vary considerably during
normal operation. Additional inputs to the process include
the hot water temperature and flow rate.

Normal PID control of this process has not been very
successful, since the controller, feedback, and auxiliary
inputs vary across a wide range of values. Different
airflows or water temperatures will affect the coil time
constant and hence the "speed" at which this process needs
to be controlled. Furthermore, the VA V box that controls
the temperature of this zone will respond to any changes in
the load by varying the airflow rate and/or the temperature
of the air supplied to the zone. It has been observed that for
a givt::n st::l uf PID l:Unslants tht:: pIUl:t:lSS will bt: wiut:r
adequate control under certain conditions and very much out
of control under other conditions.

MODELING OF COIL USING A NEURAL NETWORK

The remainder of this paper will discuss how a neural
network controller can be used to properly invoke several
process setpoint changes. A computer simulation will model
the process to ensure that the dynamic response is consistent
for all the cases. The computer model is itself a neural
network that has been trained using data from a wide range
of coil operating conditions. The network was configured to
accept a time history of each input. A list of these inputs
and their effective range used in the normalization of the
input is given in Table 1.

Several different network architectures were tested for
their ability to correctly model this process. It was discov
ered that a standard, feedforward network using the delta
rule back-propagation learning algorithm (Wasserman 1989;
Rumelhart and McClelland 1986) provided a fast and
accurate model. In this network, the input layer consisted
of a time history of the valve position and the load, as well
as four other channels. The output of the network was a
prediction of the load at the next time step. A schematic of
this network is given in Figure 2.

To check the accuracy of the model, the actual process
was put through a series of setpoint step changes similar to

HISTORY OF

PAST ACTUATOR VALUES

k-2

HISTORY OF
PROCESS
VALUES

I I k k-1

* *

HISTORY OF
AUXILIARY CHANNEL

VALUES

k k-1 k-2

* * *
0 ...

0 HIDDEN LAYERS

~ i PROCESS AT TIJ!E k+1

Figure 2 Architecture of ANN predictor.

· Figure 3

100

90

BO

., 70
:ii
~ 60 ...,
El 50
el 40

~ 30 ""
zo

10

Figure 4

100

90

BO

70

60

50

40

30

zo

10

-500 SOD 1500 2500 3500

SECONDS

Response of heating coil to changes in set
point.

- ACTUAL PROCESS
- RECURSIVELY PREDICTED PROCESS

600 1200 1800 2400 3000 3600

TIHE (SECONDS)

Comparison of ANN prediction and actual
data using recursive, highly connected net-
work.

those used in the controller comparisons. The process (i.e.,
the coil load) is initially set to 20 MBtu/h and allowed to
reach stability. After 20 minutes, the setpoint is changed to
40 MBtu/h and remains there for 20 minutes, at which time
the setpoint is increased to 60 MBtu/h. Finally, after 20
more minutes, the setpoint is reduced to 40 MBtu/h. The
PID constants used for the actual control of this process are
a gain of KP = 0.5, a reset time T, = 200 seconds, and a
derivative time Td = 50 seconds, with a scan rate of
approximately 12.3 seconds. The actual response is shown
in Figure 3. These control constants were chosen by trial
and error as the best compromise for decent control across
the range of operating conditions.

Once trained, the network was tested to see if it could
match these results. The network was initialized with the
appropriate values, then allowed to predict the process
output at each time step. The prediction process was
recursive in the sense that the output of the network was
used as the input for the load at the next time step. This
gave the results shown in Figure 4 and demonstrated the
ability of a network to accurately predict such a process in
real time. Notice, however, the depressions in the predicted
process values at 100 and 1300 seconds and the slight
increase at 2500 seconds. These sudden changes are related

to the actuator motion at these times, which, in tum, is
responding to the setpoint changes (refer to Figure 3).

These mild perturbations occur because the network is
attempting to model a reverse acting process-as the
actuator position increases, the process will decrease. In
general, the network performs well at mapping this inverse
relationship, but when there is rapid actuator motion, the
network briefly allows the process to follow this motion. At
first glance this would not appear to be a serious problem,
but as it turns out, for use in predictive control this can be
catastrophic.

In order to understand why even such a slight degree
of inaccuracy is unacceptable, we need to examine how the
predictive network operates. At any given time, the ANN
controller will predict how the process will behave over
some finite number of time steps into the future. Back
propagation is then used to adjust the controller output so
as to minimize the process error (i.e., the difference
between the setpoint and the process output value) at this
future time. If the time window is long enough so that these
brief mistakes by the predicting network are passed by, then
there is no problem. In the case of a shorter time window,
however, any mistakes in the prediction will be propagated
back through the controller and can drive the actuator into
a clamped output at the wrong side. Figure 5 shows the
open-loop response of the same network used to generate

the results in Figure 4. Here the actuator is initially set at
85 % and the system is allowed to reach stability. When the
actuator position is decreased to 75 % , we see the expected
rise in the process value, and when the actuator is increased
to 90 % , the process decreases. But we can also see the
short-term transient network error as it demonstrates a
direct action response before correcting itself. For the initial
decrease of actuator position, the network yields a low
prediction for 12 time steps (approximately 150 seconds).
If the controller prediction window was less than two and
a half minutes into the future, then any final prediction
error might tell the controller that the process is direct
acting. This would lead to completely inaccurate control.

In order to compensate for these problems, another
richly connected network was trained but this time with

90

80 ACTUATOR

70

60

so
PROCESS

40

30

20 12 TIHE STEPS

10

Figure 5

20 '10 60 BO 100 120 140 160 160 200

TIHE STEP

Open-loop response to step change showing
transient.

selectively constrained weights. All the weights between the
input nodes corresponding to the valve position and the first
hidden layer were restricted to negative numbers. Thus the
process model is forced to emulate a reverse-acting process.
In addition, all the weights between the input nodes corre
sponding to the history of the process outputs and the nodes
in the first hidden layer were forced to be non-nei:ative,
This approach was ultimately successful in finding a set of
weights that produced a realistic process model.

Now that a model has been found that can emulate the
heating coil with sufficient accuracy, we can compare
different methods of controlling the process. For these
comparisons, the model is used to simulate a one-hour test
during which the feedback loop undergoes three different
setpoint changes. These simulations closely follow the data

100

90

80

.,
70 .J

<
u
"' 60
.J
..l
:> 50 ..
f< .. 40 ...
u

"' " JO ..
20

10

0 25 50 75 100 125 150 175 200 225 250 275

Til!E STEP

Figure 6 PID controller with gain of 0.1.

100

90

60

.. 70
~
u
en 60
..l
..l
:> 50 ..
f<

"' 40 SETPOill'I'
" u
0: .. 30 ..

20

10

25 50 75 100 125 150 175 200 225 250 275

Til!E STEP

Figure 8 PID controller with gain of 1. 0.

set used for model comparison in the previous section. In
all cases the model is allowed to reach steady state before
any perturbations are introduced.

PERFORMANCE OF CONVENTIONAL
PIO CONTROLLER

A standard PID controller was initially simulated to
establish some basis for comparison of the methods. The
reset and derivative times were held constant at 250 and 50
seconds, while the proportional term was varied. Figures 6
through 8 show the results when the gain is 0.1, 0.5, and
1. 0, respectively. All of these systems demonstrate stability,
although at the lowest gain the response is too sluggish and
at the higher two gains there is considerable overshoot at

100

90 ACTUATOR

80

IJ 70
..l
<
u
" 60
oJ
..l

"' 50 ..
f<

" 10 SETPOINT .,
u
0:

" JO ..
20

lO

0 25 50 75 100 125 150 175 200 225 250 275

TIXE STEP

Figure 7 PID controller with gain of 0.5.

100

90

80

" 70 oJ
< u

" 60
oJ
..l

"' 50 ..
f< .. 40
" u
0:

" 30 ..
20

10

25 50 75 100 125 150 175 200 225 250 275

Tittl: STEP

Fi.gure 9 PID controller with gain of 2. 0.

the initial setpoint change. Figure 9 shows the same PID
model as used above using a gain of2.0. Here we see some
of the nonlinear behavior of the coil-at low setpoints the
feedback loop is stable and converging, while at the higher
setpoint the process exhibits critically damped oscillatory
behavior. At gains higher than this, the system becomes
oscillatory unstable.

Table 2 shows the RMS error taken over each of these
tests. This value is calculated from

N

EaMs =
:E (SETPOINT I - PROCESS I)2

r=l

(2)

N

where N is the total number of time steps per run. The
RMS error is used as a statistical basis of comparison with
the ANN controllers. Notice that due to the inherent lag
time in the system, it is impossible for the RMS error to
ever equal zero.

TABLE 2
Error from PIO Control Tests

I Proportional Gain I Normalized RMS Error I
0.1 10.43

05 7.68

1.0 6.63

2.0 7.08

ARCHITECTURE OF PREDICTIVE CONTROLLER

The basic premise behind predictive control is that the
controller guesses at an appropriate output then "looks
ahead" to see how this output will affect the process in the
future. At each time step, the controller is readjusted and
the prediction is repeated to see where the process will be
at some future point. The output value that puts the process
closest to the setpoint is chosen and sent to the actuator.
This technique has been successfully employed by Kuper
stein and Rubinstein (1989) and Liu et al. (1989) for their
experiments in robot hand control.

It would be computationally intensive and time consum
ing for the controller to test every possible output. Indeed,
since there can be a wide variety of inputs into the system
and since the system may be experiencing non-steady-state
conditions, the prediction of the error over the full range of
actuator motion could conceivably take longer than the
sampling period itself, making the controller useless for
real-time applications. It is desirable, therefore, to find
some way that the proper actuator position could be
determined rapidly. The back-propagation algorithm
developed for neural networks is a likely candidate for such
a speed search, whereby the entire prediction and error

CURRENT

STSTEH

CONDITIONS

VUDOV SIZE
~--·-·-·-..... ,_ .. _ , _________ .,.,

'------1 BACK PROPAGATIOK
LEARNING ROUTINE

DESIRED
SETPOillT

fUTURE ERROR

Figure 10 ANN-based predictive controller.

calculation process is treated as an activation function in a
simple network. The proposed scheme thus involves a dual
ANN controller: one to perform the actual prediction of the
process and the other to find the correct controller output
based upon the error derived by the first network. Lan
(1989), Chen (1990), and Psaltis et al. (1988) have all
shown that controllers with this kind of architecture function
remarkably well. A typical schematic of this controller is
shown in Figure 10, where the boxes labeled E represent
the emulator (predicting) network. After data are received
by the controller at time k = 0, the emulator will predict
the behavior of the process for n time steps, ending at some
future time k = nT,, where T, is the sampling period. The
controller then takes the process value at this future time,
calculates the error, then back-propagates the error through
the network to modify the controller output. The new output
is sent, and the controller then waits for the next set of data
at time t = k + 1, predicts the output at t = (n + 1)7;,
back-propagates the error, and so on. Note that the error is
not sent to each controller module as shown in the diagram
but rather is returned through the emulator networks. In this
sense, the entire controller can be regarded as a large ANN
with many hidden layers (two per time step), which uses
standard back propagation to arrive at a desired weight
corresponding to the controller motion.

. In the truck backer-upper problem (Nguyen and
Wtdrow 1990), the final position of the truck was calculated
for each change in the steering signal. The final position
was dictated by simulating the truck movement until it hit
something, for example, a loading dock. In this problem,
there were well-defined bounds placed on how far ahead in
the future the emulator needed to predict. In our case,
however, there are no definite limits. The emulator network
needs to have some constraint on how far ahead it looks,
preferably some duration longer than the time constant of
the entire feedback loop.

The key to this method is that the controller be able to
accurately predict on its own, starting from some initial
conditions, i.e., the network behaves like a Hopfield
network where the output is fed directly back into the input
over the duration of the time window used in the prediction.
This is an important feature, since if the network does not
predict the process accurately, there is no guarantee that the
process will reach a stable control.

100

90

80 ACTUATO R

PROCESS

70

60
95~ 99~ or RESPONSE

50

I I 40 I
14 . 3 .. I

23 . s. I JO I
• I 20

31. 3 TillE STEPS

10

TIHE STEP

Figure 11 Open-loop response to step change in actuator
position.

It should be possible for the ANN controller to incor
porate an internal algorithm that would allow it to determine
the optimal window size without user intervention. Figure
11 shows an open-loop step response of the process mod
eled above. The 70 % , 90 % , and 95 % rise times are shown
along with the corresponding number of time steps required
to reach these values. Also clearly shown is the dead time
of the process. It is left for future research to examine the
correct rise time to use in order to ensure a stable and
accurate response of the process to a step change. It can be
seen, however, that the 70% rise time (i .e., the ln(2) time
constant) requires 14.3 time steps. The neural network
controllers discussed below will all be tested using a 15-
time-step window.

PERFORMANCE OF LOOK-AHEAD
NETWORK CONTROLLER

Any neural-network-based controller will be useful only
if it can perform better than the PID controller shown

100

90

eo ACT!IA'J'OR

" 70
"' <(
u
"' 60

"' ...
"' 50
"' 40 ..
u ..
" JO ..

zo

10

25 50 75 100 125 150 175 200 225 250 275

TlllE STt:P

Figure 12 FANN with learning rate of 0.5.

above. The first kind of ANN controller involves the
predictive technique discussed in the previous section. Here
the network was allowed to predict where the process would
be at some time in the future, and any error was back
propagated through the model in order to change the
actuator output. This future predicting network is denoted
by the acronym FANN. The learning rate of the controller
was varied between 0.5 and 10 while the window size was
kept constant at 15 time steps (roughly three minutes).
Figures 12 through 15 show the results.

Figure 13 gives the results for a learning rate of one.
Here we see excellent control-minimal overshoot and
quil:k response to the setpoint changes. As the learning rate
increases, the network controller deteriorates into unusable
control. Notice that the feedback loop never becomes
unstable per se, but rather that the actuator begins to
oscillate excessively. This can be explained by the predic
tive quality of the controller: any actuator motion will cause
the process to change at some point in the future. The
predictor finds this value, calculates the future error, then
back-propagates that error through the network, ultimately
changing the actuator position by an amount proportional to
1?e ~earning rate. Any mistake by the controller in posi
borung the actuator will cause additional future error. As
the learning rate grows much larger, it becomes almost
impossible for the network to find the correct value; rather,
the network keeps overshooting and correcting.

The RMS error for the FANN network are given in
Table 3. Notice that although the FANN controller appears
to be better than the PID controller in the graphs, statistical
ly speaking the PID controller with a gain of 1.0 is still
slightly better than any of the FANN controllers using the
domain of learning rates and time windows tested.

100

90

80 ACTUA'roR

.. 70
"' ..
u
" 60

"' "' "' 50
"' 40 ..
u

" .. JO ..
20

10

0 25 50 75 100 125 150 175 200 225 250 275

TllfE STEP

Figure 13 FANN with learning rate of J.

100 100

90 90

BO BO

.,
70 ...

< u .,
60

.,
70

'"' < u
" 60

...
" 50 .. " 50 ..
!< !< .. 40 10

"' u u
0: 0: .. 30 .. .,

30 ..
20 20

10 10

25 50 75 100 125 150 175 zoo 225 250 275 25 50 75 100 125 150 175 zoo 2Z5 Z50 275

TillE S'l'EP TIKE STEP

Figure 14 FANN with learning rate of 5. Figure 15 FANN with learning rate of 10.

100

90 90

BO AC'l'IJATOR BO

.,
70 .,

< " u ll rn 60 PROCESS !'

70

60
...
" 50 " 50

!< !<

"' 40 SETPOIN'I' "' .,
"'

10
u u
0: ..
")0 ., 30

20 20

ID 10

O+---,.~-,---.~-.-~.-----.-~.,----,-~-,---,~--.-~

25 50 75 100 125 150 175 200 225 250 275 0 25 50 75 100 125 150 175 200 225 250 275

TUU: STEP TIKE STEP

Figure 16 JANN with learning rate of 0.5. Figure 17 JANN with learning rate of 1.

100 100

90 90

80 BO ACTUA'l'OR

.. 70 .,
70 < < ll u

Dl 60 PROCESS fl 60 PROCESS
" 50 " 50
!< !< .. 40 "' 10 SE'IPOIIT .. "' u lJ
0: .. .,

30 .. 30
20 zo

)
10 ID

25 50 75 100 125 150 175 zoo 225 250 275 ZS 50 15 100 125 150 l ?5 200 225 250 275

TillE STt:P TIKE STEP

Figure 18 JANN with learning rate of 5. Figure 19 JANN with learning rate of 10.

Table 3 Normalized RMS error for ANN controllers

I learning rate II FANN I
05 7.29

1.0 6.90

5.0 6.81

10.0 8.09

PERFORMANCE OF INTEGRATING
ERROR NETWORK

JANN

8.49

7.61

6.55

6.43

I

The FANN controller works by looking at only a single
error in lhe process at some point in the future. Since the
process is continuous and it is desirable to minimize
overshoot, an integrating ANN (IANN) controller was
considered. This controller works on the same principles as
the FANN controller but talces the RMS process error over
the window and uses that in the back propagation.

The effects of the learning rate were also studied for
the IANN. Here, as with the FANN, the window is
maintained at 15 time steps and the learning rate is varied
between 0.5 and 10. In truth, however, it is not fair to
compare the learning rates between the two methods. The
reason is that in the FANN only one error was used for the
comparison, while in the IANN a number of errors equal to
the size of the window are used. Since any change of
actuator position is directly proportional to this error, it is
conceivable that an effective learning rate for a FANN
network would not work for an IANN controller, and vice
versa. Nonetheless, in our example, it does not appear to
make much of a difference. Figures 16 through 19 show the
effect of an increasing learning rate. Note that at a learning
rate of 10, the IANN controller yields excellent control,
whereas this same learning rate for the FANN controller
made the process erratic. Results from these tests are given
in Table 3.

CONCLUSIONS

The goal of this research was to see if neural networks
could be used for adaptive and predictive control of a
building systems process. The controller is adaptive in the
sense that the output of the network used to model the
process reflects the changing operating environment, and it
is predictive since it examines the future effect of the
current controller action. TI1ese features were demonstrated
using computer simulations. As seen in Table 3, the IANN
controller was able to minimize the process error better
than the PID constants currently used to control this
process. As this paper was being finalized, these experi
m~nts were repeated in a real-world, on-line application
with success. The computer used as the ANN controller has
the computational power of a slow AT-class machine, and

yet was able to perform both FINN and IANN control
within a 10-second scan rate.

The application of neural network controllers would
seem to have promise for use in feedback loop processes.
Both the future error and integrating ANN controllers have
the potential to outperform the standard PID algorithm.
Furthermore, the degrees of freedom have been reduced
w~th rega~d to the conventional PID controller-only the
wmdow size and learning rate need to be specified as
opposed to the three PID gains. It would also appear that
the ANN controllers could find their own window size
without additional user input.

REFERENCES

Anderson, C. 1989. Learning to control an inverted pendu
lum using neural networks. IEEE Control Systems,
April, pp. 31-36.

Chen, F. 1990. Back-propagation neural networks for
nonlinear self-tuning adaptive control. IEEE Control
Systems, April, pp. 44-48.

Helferty, J.J., J.B. Collins, L.C. Wong, and M. Kam.
1989. A learning strategy for the control of a one
legged hopping robot. Proceedings of the 1989 Ameri
can Control Conference: 896-901.

Kuperstein, M., and J. Rubinstein. 1989. Implementation
of an adaptive neural network controller for sensory
motor coordination. IEEE Control Systems, April, pp.
25-30.

Lan, M. 1989. Adaptive control of unknown dynamical
. systems via neural network approach. Proceedings of

the 1989 American Control Conference: 910-915.
Liu, H., T. Iderall, and G. Bekey. 1989. Neural network

architecture for robot hand control. IEEE Control
Systems, April, pp. 38-41.

MacArthur, J.W., E.W. Grald, and A.F. Konar. 1989. An
effective approach for dynamically compensated
adaptive control. ASHRAE Transactions 95(2): 415-
423.

Nguyen, D.H., and B. Widrow. 1989. The truck backer
upper: An example of self learning in neural networks.
Proceedings of the International Joint Conference on
Neural Networks 2: 357-363.

Nguyen, D.H., and B. Widrow. 1990. Neural networks for
self-learning control systems. IEEE Control Systems,
April, pp. 18-23.

Psaltis, D., A. Sideris, and A. Yamamura. 1988. A
multilayered neural network controller. IEEE Control
Systems, April, pp. 17-21.

Radke, F., and R. Isermann. 1987. A parameter-adaptive
PID-controller with stepwide parameter optimization.
Automatica 23: 449-457.

Rumelhart, D.E., and J.L. McClelland. 1986. Parallel
distributed processing: Explorations in the microstruc
ture of cognitio11. Cambridge, MA: MIT Press.

Wallenborg, A.O. 1991. A new self-tuning controller for
HY AC systems. ASHRAE Transactions 97(1): 19-25.

•

Wasserman, P.D. 1989. Neural computing: Theory and
practice. New York: Van Nostrand Reinhold.

9

Zaheer-uddin, M. 1990. Combined energy balance and
recursive least squares method for the identification of
system parameters. ASHRAE Transactions 96(2): 239-
244.

