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ABSTRACT 

In modem livestock buildings air distribution and air quality are important parameters to animal 
welfare and to the health of full-time employees in animal production. Traditional methods for 
calculating air distribution in farm buildings are mainly based on formulas for air jets which do 
not include the effect of room geometry, obstacles or heat sources. This paper describes the use 
of Computational Fluid Dynamics to predict air flow patterns and temperarure distribution in a 
ventilated space. Good agreement is found when results of numerical predictions are compared 
with experimencal data. 
KEYWORDS: Simulation, air flow, obstacles, buoyancy. 

INTRODUCTION 

During the last decades livestock production has developed rapidly towards larger and more 
intensive production systems . In modem production systems air quality is important to animal 
welfare and important to the health of people who are full-time employed in animal production. 
Under these conditions design of proper ventilation systems is getting increasingly important. 

Traditional methods for calculating air distribution in farm buildings are mainly based on formulas 
for free jets or wall jets. Using these methods it is not possible to include the effect of room 
geometry or the effect of obstacles on air flow patterns. Furthermore, traditional methods provide 
no possibilities to calculate important parameters such as contaminant concentration and ventilation 
efficiency for the ventilation system. 

Computational Fluid Dynamics (CFD) is a technique for calculating air velocities and temperature 
distribution in a ventilated space. In principle, the ventilated space is divided into a number of 
small control volumes. In the centre of each control volume air velocities, pressure and 
temperature are calculated. The solution is determined by the boundary conditions which include 
room geometry, position of air inlet and outlet, inlet air velocity and air temperature and position 
of heat sources and obstacles. 

Once the air flow field is described in this way, it is possible to calculate contaminant distribution 
in the room provided boundary conditions for the contaminant sources are known. 

'In previous publications the author has used the name K.S. Christensen. The author works at 
Aalborg University on a research project governed by the Royal Veterinary and Agricultural 
University in Copenhagen. The project is sponsored by the Danish Agricultural and Veterinary 
Research Council. 
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The principles of CFD have been used for about two decades (Launder and Spalding, 1974), 
(Nielsen, 1974). Today the required computer power is available to numerous researchers and 
many people are investigating the use of CFD for ventilation purposes. 

The application of CFD to air flow in livestock buildings has been examined by a few authors. 
Choi et al. (1987, 1988, 1990, 1992) used a two-dimensional model to investigate the distribution 
of velocity and contaminants as well as the effects of buoyancy and obstacles. Krause and Janssen 
( 1990) used a two-dimensional model to study how different air flow patterns could be used as a 
tool to minimize ammonia emission from livestock buildings. Hoff et al. ( 1992) investigated three­
dimensional effects of buoyant flow in a slot-ventilated enclosure. 

MATHEMATICAL MODEL 

A complete description of non-isothermal turbulent air flow in a room requires a number of partial 
differential equations. The governing differential equations can all be written in the following 
general form: 

( 
aq, aq, aq, ) ( azq, a2q, a2q, ) P u- + v- + w- == (µ 1 + µ,) - + -, + -, + s41 ax (Jy az. ax2 (Jy- az.· 

(I) 

where p is the air density 
u is the velocity in the x - direction 
v is the velocity in the y - direction 
w is the velocity in the z - direction 
s. is a source term of the variable </> 

cp can be any of the variables to be solved 
µ.1 is the constant laminar viscosity of the air 
µ., is the turbulent viscosity of the air 

The left-hand side of eq. (1) represents convection and the right-hand side represents diffusion and 
source terms. More details about the governing equations are described by Schlichting (1979). 

The turbulent viscosity describes the effects of turbulence on the air flow. The local value of the 
turbulent viscosity should be determined in each point of the solution domain by a turbulence 
model. Rodi (1984) describes the principles of different turbulence models. In this project the 
standard k,e turbulence model was used. in which the local value of turbulent viscosity is defined 
as: 

where 

µ, 

c~ is an empirical constant 
k is the turbulent kinetic energy 

k2 
pc -

I' € 

e is the dissipation of turbulent kinetic energy 

(2) 

Like air velocities and air temperature the additional variables k and e should be calculated in each 
point of the solution domain. which is done by equations of same type as eq. (I) with different 
source terms. After introducing these variables the equation system to be solved consists of 7 
partial differential equations with seven unknowns. The unknowns are the velocities u, v and w, 
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air pressure p, temperature T, and the turbulent quantities k and £. Techniques for numerical 
solution of the equations are described by Patankar 1980. 

RESULTS 

The first tes t of the mode l was made on an isothermal two-dimensional model with a ceiling­
mounccd obstacle . The two-dimensional test case is shown in figure l. The room has a length L 
of three times the height H. The inlet is in the upper left corner of the room and the outlet is in 
the lower left corner. In let height is h = 0.02 H. The inlet jet will form a horizontal two­
dimensional wall jet. A ceiling-mounted obstacle of height f is placed at the distance x1 from the 
inlet. Values of x1 /h = 10, 30 and 60 are used in this paper. 

r---- Xf -----

1 h lf 

H 

L 

Figure 1. Geometry of the test case. 

Nielsen ( 1983) presented experimental results of this test case. Velocity profiles were measured in 
the wall jet downstream of the obstacle in the distance x = 1.7 H from the inlet and also in the 
occupied zone at the distance x = 2.1 H from the inlet. Figure 2 shows calculated velocity vectors 
of a simulation where it can be seen how the inlet wall jet reattaches to the ceiling downstream 
of the obstacle. 
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Figure 2. Calculated isothermal flow field with a ceiling-mounted obstacle. 

In figure 3 calculated velocity profiles for di fferent posi tions of the obstacle are compared with the 
experimental data of Nielsen ( 1983). It appears that good agreement is obtained, except when the 
obstacle is placed very close to the inlet. More details on this case are described by Christensen 
(199'.?.). 
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Figure. 3. Calculated and measured velocity profiles in the jet (left) and in the occupied zone 
(right). 
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Next step in the model validation was to include the temperature equation and buoyancy forces 
to predict non-isothermal air flow in a two-dimensional test case with a heat source evenly 
distributed along the floor and the same dimensions as in the previous case. In this case there were 
no obstacles. According to the test case specifications (Nielsen 1990) simulations should be carried 
out with increased Archimedes number until a reduced penetration depth of the inlet air jet is 
obtained. 

Simulations carried out with a two-dimensional model were not able to predict a reduced 
penetration depth. Below a certain Archimedes number the inlet air jet would always penetrate to 
the end wall of the room (figure 4) and above this Archimedes number the inlet air would fall 
down immediately after entering the room (figure 5). 
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Figure 4. Below a certain Archimedes number the inlet air jet penetrates to the end wall. 
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Figure 5. At higher Archimedes numbers the inlet air falls down directly from the inlet opening . 

Now the three-dimensional simulation model was set up with the boundary conditions of the two­
dimensional test case. It is shown in figure 6 that this model is able to predict a reduced 
penetration depth of the air jet. Furthermore the simulations show that there may be some 
instabilities and some three-dimensional effects in this case. Figure 7 shows an example of a 
calculated flow field in a horizontal plane at the same height as the inlet and figure 8 shows the 
corresponding flow field a few centimetres above the floor. Figures 6 - 8 show the three­
dimensional nature of the flow. Three-dimensional effects in a similar test case with two­
dimensional boundary conditions were also reported by Hoff (1992). 
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Figure 6. A reduced penetration depth was predicted by a three-dimensional simulation model. 
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Figure 7. The simulated flow field in a horizontal plane near the ceiling. 
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Figure 8. The simulated flow field in a horizontal plane near the floor. 

CONCLUSIONS 

The numerical prediction of air flow in livestock buildings has been investigated by using a test 
case with ceiling-mounted obstacles such as light fittings or ceiling beams which are often found 
in livestock buildings. Predicted velocity profiles were in good agreement with experimental 
results for this test case. 
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Using a three-dimensional simulation model including the temperature equation and buoyancy 
forces it was possible to predict a reduced penetration depth of a non-isothermal inlet air jet. 

Based on the results obtained in this project and results presented in the literature it is concluded 
that numerical prediction of air flow will be a valuable tool for research and design of ventilation 
systems for livestock buildings. A very interesting feature is the possibility to make detailed 
calculations of environmental conditions in the occupied zone , such as velocity and temperature 
distribution and contaminant concentrations . 

Finally, it should be mentioned that one three-dimensional simulation of non-isothermal air flow 
may take several hours of computing time on a normal workstation, but this problem is expected 
to be reduced in the future with more efficient computer codes and faster computers . 
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