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Computer Generation of Semi-Symbolic 
Thermal Network Functions of 
Buildings 

T. Y. CHEN* 
A. K. A THIENITIS* 

A systematic computer metltod is presemed for generating rlre symbolic transf er functions of 
IJ1Jildi11gs, wltid1 have several inhere111 merits i11 sensitivity analysis. opti1111m1 design and control 
s111die.I'. After intrnci11<:i11_q the concept of a generaH:ed-node admiuance matrix. a 11ew formulation 
particularly suitable fnr 1/te .remi-symbolic (i.e. some nf 1/re ne1work parameters bei119 .tymbolt) 
network analysis of buildings is cle.rcribed. A11 algorirhm based on botlt 1/re 11ew f orm11latio11 and 
OJI algebraic method is f urther Jet·el1Jped i11 order to eliminate as many invalid symbol combinations 
as pv!lsible f or the efficient generation of semi-symbolic 1hermal-11etwurk flu11:1io11s of buildings. 
An example ciemcmstrnting the application and efficiency of this metltoci is i11d11ded. 

NOMENCLATURE 

Q heat flow W 
T temperature K 

y, Y thermal admittance W K - 1 

Z thermal impedance K w- 1 

c. thermal capacity J K - 1 

Subscripts 

s Laplace transform variable or symbolic entry 
g transfer conductance W K - ' 
h transfer temperature ratio 

H transfer function 
A matrix or node-to-branch incidence matrix 
B loop matrix 
C cutset matrix 
S diagonal matrix with symbolic entries 
V matrix with numerical entries 

o source 
j, k, I. m node numbers 

b branch 
n node 
t tree 
s symbol 
v value 
y1 index of rows or columns in a matrix 

('/), (i), (j) a set of the indices of rows or columns in a 
matrix 

INTRODUCTION 

THERE ARE two common techniques used in building 
thermal design and control studies, time domain and 
frequency domain techniques. The time domain tech­
nique can be applied to any systems, including nonlinear 
and time-varying ones. In many cases, however, non­
linear elements in a network can be linearized and then 
the whole system becomes linear. For linear systems, the 
frequency domain technique has several advantages over 
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the time domain technique [5], such as elimination of 
errors from the discretization of massive walls in the 
time domain simulation, flexibility in detail of both the 
simulation and the weather model with a variable number 
of hannonics [5), easy simulo.tion of large thermal net· 
works [3] and simplification of sensitivity analysis or 
building thermal parameters (4] by means of network 
decomposition techniques known as diakoptics. For a 
complete discussion of diakoptics and its application to 
building energy analysis, one may refer to (_'.!]and [3. 4] . 
A potential advantage. which has not been exploited in 
building thermal design and control studies. is that the 
symbolic network analysis technique in the frequency 
domain can be utilized to further facilitate the sensitivity 
analysis, optimum design and control studies of build­
ings. 

Symbolic network functions have several inherent mer­
its (7, I I). Because some original design parameters of 
interest may be retained as symbols in the model, ana­
lytical sensitivities on a small scale and optimum design 
on a large scale could be easier. In addition when transfer 
functions can be obtained withs kept as a symbol, their 
evaluation with different frequencies could be made with­
out the procedures of both solving the simultaneous 
equations at each harmonic and using fitting techniques 
for obtaining the transfer function in s-domain [6]. This 
is particularly useful for frequency response analysis of 
building thermal processes in the design and tuning of 
feedback controllers. Moreover, for small building net­
works with all design parameters in symbols and for 
large building networks with a few design parameters in 
symbols the symbolic analysis technique provides 
irisights into the effect of design parameters on the ther­
mal performance of buildings. Furthermore, there are 
stiU such other advantages as control of error in numeri­
cal calculation, simplification of time domain calculations 
by means of inversion of the Laplace transform, siin-

r 
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ultaneous evaluation of several network functions and 
facilitation of statistical analysis as pointed out by Lin 
(7] and by Singhal et al. [ 11 ]. 

Up to now, analytical solutions in the frequency 
domain for the thermal network of buildings have been 
deduced by hand. Examples include an analytical model 
for a five-node network with lumped parameter clements 
by Kirkpatrick er al. [2] and one with a two-node network 
including a distributed parameter element by Athienitis 
er al. [I]. It is almost impossible to obtain symbolic 
network functions for a large thermal network without 
computer aid. A systematic computer method is therefore 
obviously necessary for this purpose. 

Several methods are available in the theory of electri 
circuits and systems for the symbolic network analysis. 
Mielke's signal flowgraph formula [SJ avoids the invalid 
calculation of cancelling terms by combining topological 
network information and is more efficient than the other 
methods based on Mason's formula. The formulation 
taking advantages of the node admittance matrix de­
veloped by Alderson and Lin [9, 10] has a small number 
of equations. However. its parameter extraction process 
is somehow complicated because each symbol appears at 
four different entries in the coefficient matrix . Singhal 
and Vlach"s numerical interpolaLion method [1 l. 12) has 
been shown computationally competitive with Alder on 
and Lin's parameter extraction method (12] , due to 
utilising such powerful numerical techniques as FFf 
algorithms. sparse mntrix methods and adjoint-net­
work approaches and eliminating more invalid symbol 
combinations before calculation. Nevertheless. as com­
mented by Sannuti and Puri [131, Mielke's signal flow­
graph formula [8] is only suicable for the network analysis 
with all the parameters in symbols while Alderson and 
Lin"s parameter extraction and Singhal and Ylach's 
numerical interpolation arc only suitable for the network 
with a few parameters in symbols. 

The formulation presented by Sannuti and Puri [13] 
seems to be conceptually simple and computt11ionally 
competiLive as compared with the methods mentioned 
previously. IL is suitable for both cases where all or some 
of the network parameters are represented by symbols. 
When all the network parameters are symbols, it elim­
inates more invalid symbol combinations before cal­
culating any determinant than the Mielke's method per­
mits (8). For semi-symbolic networks. it is simple, direct 
and in general computationaJly competitive to the inter­
polation method, as compared by Sannuti and Puri [13]. 

Thermal networks of buildings have their own 
characteristics. In a detailed building thermal network, 
the number of branches is much more than that of nodes. 
rn addition, there are only several thermal design par­
ameters of buildings that can be chosen by designers 
while many other parameters in the thermal network of 
buildings take or approximately take constant values. If 
Sannuti and Puri's formulation is applied to the thermal 
design and control of buiMings the coefficient matrix for 
the thermal network of buildings may be very large due 
to a great number of branches in the network. This may 
lead to inconvenient generation of formulation because 
fundamental cutsel and loop matrices arc interdependent 
and considerable effort is required to obtain them [17]. 
Moreover, their method may be unable to avoid gener-

ating some symbol combinations that are topologically 
invalid. A new formulation is therefore introduced in 
order to reduce the number of variables. An efficient 
algorithm based on both the new formulation and the 
algebraic method presented by Sannuti and Puri (13] is 
further developed, which may allow one to eliminate 
more invalid symbol combinations in semi-symbolic net­
work analysis than the method of Sannuti and Puri. 

A NEW FORMULATION FOR SEMI­
SYMBOLIC THERMAL NETWORKS 

s mentioned previously, the nodal formulation of 
Alderson and Lin involves a small number of variables, 
but its parameter extraction process is not straight­
forward. Sannuti and Puri"s formula has only half of the 
number of variables concained in Mielke's hybrid system 
of equation • and symbolic analy is based on the former 
is more efficient. However. Sannuti and Puri's fonnu­
lation may contain excess topological information for the 
parameter extraction of . emi-symbolic networks in which 
the number of branches is much more than that of nodes. 
The advantages of Alderson and Lin 's and Sannuti and 
Puri's formulations could be ca ken at the same time when 
the concept of a generalized-node admiuance matrix is 
introduced and the topological information of a given 
network is appropriately utilized. It is known that a fun­
damental cutsct divides a network into two isolated parts, 
one of which may be regarded as a generalized node. 

tilizing this concepl. all of the numerical parameters 
in the cotree may fom1 a generalized-node admittance 
submatrix in order to reduce the size of coetlicient matrix 
for the thermal network of buildings. 

In the thermal network of buildings. heat flow sources, 
such as so!ur radiation. may be equivalently transformed 
into dependent heat flow sources controlled by tem­
perature variables. Hence. thermal networks in which 
there are only dependent heat flow and temperature 
sources controlled by temperature variables besides 
thermal impedance, capacitance and independent source 
elements are considered here. 

The new formulation , like the others. is based on the 
two thermal balance law , which arc analogous co the 
Kirchhoff's Current L:nv and the Kirchhoff's Voltage 
Law, and the element constitutive relations in the fre­
quency domain, which are shown in Table I. It should 
be noted from Table I that the thermal admittance here 
is defined to be Y = QJk/7Jk• wh.ich is analogous to the 
electric admittance. For instance, when ~k denotes swing 
in i.ndoor air temperature and Qik is the rate of heat flow 
through the internal surface of the construction, Y is 
called a the self-admittance in this paper, which cor­
responds lo the thermal admittance in [24] and the ClBSE 
Guide [25]. 

For a given thermal network with n nodes, a complete 
tree should first be selected in such a way that edges with 
controlling and controlled temperature variables and as 
many edges with symbolic parameters as possible act 
as tree branches while edges with controlled heat flow 
sources do not. The temperature potentials of tree 
branches the necessary heat flows of everal cotree 
branches with symbols, and node tempemturcs are chosen 
as a set of basic variables. Providing that any edge with 



Thermal Network Functions of Buildings 303 

Table I. Basic elements in the thennal network 

ELEMENTS SYMBOLS CONSTITUTIVE EQUATIONS 

Q. --HEAT FLOW 
SOURCE i-QD--k Qjk = Qo 

To 
TEMPERATURE 

' + o- Tik SOURCE l • k = To 

LUMPED y = YTik - Qr" 0 ADMITTANCE i~k or Tik - ZQJk = 0 OR IMPEDANCE z 

LUMPED sCp 

THERMAL j • 11 • k sCp Tik - Qik = 0 
CAPACITY 

Y = sCp 

y 

GENERAL i--0-x YTj.lc - Qjk 0 ADMITTANCE = 

TEMPERATURE-
Qlm 

1-
CONTROUED HEAT T1in FLOW SOURCE 

m-

TEMPERATURE- Qlm 

CONTROUED 1-

TEMPERATURE T1m 
SOURCE m-

a controlled temperature source in a tree does not fonn 
a fundamental cutset, the law of conservation of thermal 
energy can be expressed by 

(1) 

where Tb represents a tree-branch-temperature vector 
corresponding to the passive tree branches; Qb is a heat 
flow vector corresponding to lhe pa·ssive cotree branches 
with symbol.ic parameters ; T. stands for an n-1 dimen­
sional node-temperature vector ; C denotes an appro­
priate cutset matrix ; Y betokens a diagonal admittance 
matrix; Y0 is a generalized-node admittance matrix. The 
rules for forming it are as follows: 

Assume that a tree branch intersected by a fun­
damental cutset i is ctirected away from the generalized 
node i and that node j belongs to the generalized node i 
but node k does not. 

(a) For an admittance element y connected between 
nodes j and k, + y appears at the entry Y"(i, j) while - y 
at Yn(i, k). 

(b) For a dependent heat flow element g leaving from 
node j to k controlled by temperature difference Tim 

E'. Qlm = 0 
Qik = gT1m 

L~ 
Qlm = 0 

Tik = hT1m 

between nodes 1 and m, +g appears at both Yn(j, l) and 
Y.(k, m) while -g at Y.(j, m) and Y.(k, 1); for the heat 
flow leaving from node k to j, the sign of the entries is 
opposite. 

(c) All the numerical parameters of co tree edges should 
appear in the generalized-node admittance matrix. 

Applying the Kirchhoff's Voltage Law to those cotree 
edges with symbolic parameters, we obtain 

(2) 

where Z is a symbolic diagonal impedance matrix and B 
is an appropriate loop matrix. According to the defi­
nition, the transfer function H is the ratio of a desired 
output x to an independent source x0 • 

or 

-x+H.Y0 = 0. (3) 

In the thermal network of buildings, x may be an indoor 
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air temperature or operative temperature and :c0 may be 
outdoor air temperature. solar radiation or auxiliary 
beat. For instance, an auxiliary heat ·ourcc Q may first 
be replaced with a dependent heat source controlled by 
indoor temperature T, which can be expressed by 
Q = T/ fl. Then, it may be rearranged as in the form of 
Equation (3). The constitutive equation for the element 
of temperature-gontrolled heat flow source in Table l 
may be written in the form 

(4) 

where Z is cq ual to c - 1 ; G is a diagonal matrix consisting 
of g1; g1 is the ratio of QJk/Ttm· The determination of tree­
brancb-temperature vector Tb in terms of node-tem­
perature vector in Equation l is given by 

(5) 

where A~ is the transpose of an appropriate node-to­
tree-branch incidence matrix. 

When Equations (I) through (5) are put into one 
matrix equation and properly partitioned, we have a new 
formulation in the form 

YI 0 0 0 C11 C,2 Y,. Tlb 

0 Y2 0 0 C21 C~2 Yz. T2b 

0 0 Y3 0 CJI C32 YJ. T3b 

0 -I 0 H4 0 0 0 T~ =0 

B1 82 83 84 ZS 0 0 QSb 

0 0 -I 0 0 Z6 0 Q~ 

I, 12 13 14 0 0 -A"[ T. (6) 

where Tlb, T2b and T~, and T~ form a complete-tree­
branch-temperature subvector Tb• corresponding to 
uncontrolling, controlling and controlled edges. respec­
tively; QSb and Q~ constitute a heat flow subvector 
Qh> corresponding to uncontrolling and controlled edges, 
respectively ; Yl, Y2 and Y3, and ZS and Z6 betoken 
partitioned diagonal admittance and impedance sub­
matrices forming Y and Z, respectively : H4 is a diagonal 
submatrix of nondimensional parameters. Y,., Y;ia and 
Y:ie constitute a generalized-node admittance submatrix 
Y0 in Equation ( l) ; Bi1 and C;J represent appropriately 
partitioned loop and cutset submatrices forming B and 
C, respectively ; 11, 11 , 13 and 14 together form an 
n-1 x n-1 dimensional identity submatrix; I is an identity 
submatrix of appropriate order. 

It should be noted that the determinant of the co­
efficient matrix in Equation (6) should be equal to zero, 
otherwise the homogeneous equations could only have 
a trivial solution. Hence, the transfer function can be 
obtained by the sorting approach [7], in which all the 
terms with a transfer function symbol are sorted out for 
the denominator, multiplied by -1. The numerator of 
the transfer function is equal to the sum of the other 
terms. 

AN ALGORITHM BASED ON BOTH THE 
NEW FORMULATION AND SANNUTI AND 

PURl'S ALGEBRAIC METHOD 

Let us consider all tree branches with symbolic par­
ameters first. The coefficient matrix may be partitioned 
into four blocks 

(7) 

where 

Yl 0 0 0 C11 C12 

0 Y2 0 0 C21 C22 

0 0 Y3 0 C11 C12 
A11 = 

0 -I 0 H4 0 0 

B, Bi 83 B4 ZS 0 

0 0 -1 0 0 Z6 

A12 = [Y. O]T, Y. = [Y •• Y;ia YJa] 

A11 =[I OJ, I= [I, 12 l3 1.1 

It can be observed that the submatrices A 12, A21 and 
A 22 consist of all their entries with numerical values while 
the submatrix A 1 1 has all its principal diagonal entries 
with symbolic parameters. Applying the generalized 
algorithm of Gauss [15], the determinant ~ of the co­
efficient matrix may be obtained by 

~ = IA1, -A12 A2°21 A11llAd. (8) 

Substituting (7) into (8), we obtain 

(9) 

Partition the above matrix into such blocks that it 
matches with the partitioned matrix A 11 . 

(10) 

Substituting (8), (9) and (10) into (7), we have 

~ = 1s1+1v1 (11) 

where 

S = diag [Yl Y2 Y3 H4 ZS Z6] 

Yu Y,2 Yu 0 I C,1 
I 

C12 

Yu Y22 yll 0 I C21 Cn 

y33 
I 

Cn Y11 Y12 0 I CJI 
[V 11 

1 
Y12] V= -- - ----- --,- ----

= v2~ ~v2~ . 0 -I 0 0 I 0 0 

B1 B2 Bi B, I 0 0 
I 

0 0 -1 0 I 0 0 

In Equation (11), S is a diagonal matrix with symbolic 
entries and V is a dimensional matrix with all its entries 
numerical. Using Cayley's expansion of a determinant 
[13, 18], ~may be obtained by 

where 

~ = ;~ ~ [D sr.}vM1 

IV1yJl=l, whenj=k; 

fl S7; = l, whenj = 0. 
1- 1 

(12) 
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(y) is a set consisting of 71, y2, ••• , (j; s denotes an entry 
in the diagonal matrix S; JI; represents the row and 
column index of the entry s; r is the set of all possible 
(y). V1,i is a submatrix taken from the matrix Vin Equa­
tion ( 11) by deleting the rows and columns corresponding 
to the set (y), the determinant of which is the coefficient 
of symbol combinations. 

In expanding the determinant, some symbol com­
binations may be invalid because the minor 1Vc7il may be 
equal to zero. When using Cayley's expansion, therefore, 
the theorem (Appendix B) given by Sannuti and Puri (13] 
may first be used in order to eliminate those invalid 
terms before calculating any minor. Close examination of 
Equation (11) shows that the submatrix V 22 is composed 
of all its zero entries and that V 12 and V 21 contain the 
useful topological information of a given network. 
Hence. more invalid terms may be eliminated if some 
conditions stricter than those (Appendix B) given by 
Sannuti and Puri (13] are introduced. It is assumed that 
each of 6 submatrices in the diagonal matrix S in Equa­
tion ( 11) has nk symbols. mk represents the number of 
symbols extracted from each submatrix and then the 
number of remaining symbols is nk -mk = lk . The 
coefficient matrix V1,> may be written in the form 

where U,i is a submatrix taken from the submatrix V;i in 
Equation ( 11) by deleting the rows and columns cor­
responding to the set (y); U ic and U 2 1 arc (1 1+1 2 +1 3) x 
(1 5 +1 6 ) and (1 4 +1 5 +1 6 ) x (1 1 +1 2 +1 3 +1 4 ) submatrices. 
respectively. It is supposed that there arc only n, rows 
and nc columns with nonzero entries in L' 1 2 and U z" 
separately. Then. we have the following inequalities for 
eliminating invalid symbol combinations. 

The constraint conditions of inequalities : The deter­
minant of V<r> could be nonzero only if n,;.: 15 +1 6 and 
Ile ;;i: I 4 + 1 s + 16. 

Proof. Expanding the determinant ofV1, 1 from the last 
15 +1 6 columns according to Laplace's theorem (Appen­
dix A), ifn, < 15 +1 6, the determinant ofV1,l will be equal 
to zero because there are, at least, (1 5 +1 6)-n, rows with 
all zero entries in any minor of order l5 +lfi taken from 
the last l 5+1 6 columns. Similarly, we can prove the other 
condition ofn0 ;;i: 14 +1 5 +1 6• 

Let us now consider thermal networks in which some 
parameters of tree branches are expressed by numerical 
values. Although the principle of calculation to be pre­
sented can be applied to any thermal network. to simplify 
notations, it is assumed that only some of the parameters 
of uncontrolling edges in the tree are numerical values. 
Then, Equation (I I) may be rearranged and repar­
titioned in the form 

S = diag (0 Yl, Y2 Y3 H4 ZS Z6] 

(13) 

where 

V1 1 = [Y,+Yl,] 

V 12 = [Y,, Y,2 Y.J 0 C,, C,2] 

BAE 28:3-F 

V21=[Y., Y2, YJ, 0 B, w 
Y, Y,2 y.J 0 I C,1 C,2 

I 

Yi. Y22 Y23 0 I C21 C22 
I 

Y:i. Y32 V33 0 I C31 C32 [W11 1 
W12] Y22= - - - - - - - - - --, - - - - -

= w~ ~w~ 0 -I 0 0 I 0 0 

B, B2 83 B ' 4 I 0 0 

0 0 -I 0 I 0 0 

where Yl, and Yl, denote the numerical and symbolic 
parameters of uncontrolling tree branches, respectively. 
The other submatrices with the subscripts v and s are 
partitioned, according to Yl, and Yl,. 

There may be two approaches that can be employed 
to find the determinant of the above matrix. 

Approach 1. The algorithm for thermal networks in 
which all the parameters of tree branches are symbolic 
may be directly employed. The advantage of this 
approach is that it can eliminate as many invalid terms 
as possible before calculating determinants. Never­
theless, the disadvantage is that higher order deter­
minants need to be calculated in the symbol extraction 
process. 

Approach 2. Similar to the approach used before, the 
generalized algorithm of Gauss may first be employed to 
reduce the order of the coefficient matrix and the symbol 
extraction process is then carried out. The advantage of 
this approach is that lower order determinants­
are calculated in the process. However, the disad­
vantage is that the useful topological infonnation in 
the coefficient matrix formed properly could be neglected 
after secondly perfonning the generalized algorithm of 
Gauss . 

The two approaches can be combined together because 
whatever kind of methods is applied, the solution should 
be unique. Therefore, the former may be used to weed out 
invalid terms while the latter to calculate detenninants in 
the symbol extraction process. It should be noted that 
this principle of calculation can also be applied to Sannuti 
and Puri's method for the efficient generation of semi­
symbolic network functions. 

EXAMPLE APPLICATION 

Although the method developed can deal with any 
detailed model of buildings, as an example, a simplified 
model may be helpful for both describing and under­
standing it. The dimensions of a room under con­
sideration are 2.82 x 2.22 x 2.24 m and the window area 
is 1.17 m2

• The room model with node positions is 
schematically shown in Fig. l(a) and its thermal network 
in Fig. l(b), which is a five-node model, including node 
5 for an outdoor temperature source. Node l denotes the 
interior surface of window glazing, the thermal mass of 
which is assumed to be negligible. Node 2 represents the 
interior surface of ceiling, the thickness of which is so 
thin that its thermal mass can be treated as a lumped 
capacity. Node 3 is the interior surface of surrounding 
walls made up of an inner lining of storage mass material 
and outer massless insulation. Node 4 betokens indoor 
air temperature and node 6 is for reference. Surrounding 

" 
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(a) 

Z1 

nJ 

"'v 

Y1 I Yg n1 

I """" 
>Yu 

""V-

Y131/ Y4 I Zs 

""' 1n2 
A,, ___.n-

ct;' Y12 I ~ 
_l-

Tb5 
3 f' :_ Tb5 = 1' 

Za ! u 

I I-
I 

nG 

- Tb4+ HsTbs= 0 ' -Tbs+ ZsQbe= 0 

( b) 

Fig. l . Thennal network of room. 

multilayered walls are modelled by transfer- and self­
admittances [I], l/Z8 and Y 3• The heat flow Q 8 through 
surrounding walls into the room forced by outdoor tem­
perature T0 can be expressed by Q8 = Tb5/Z8 (or Y8T0 ) 

according to Norton's theorem [I], where Y8 is the trans­
fer-admittance of surrounding walls and Tbs denotes T0 

for unified notation. When Tb5 is treated as a variable, the 
heat flow is equivalently transformed to a temperature­
controlled heat flow source. The capital letters denote 
symbolic parameters, which are defined as follows: Y2 

is the heat capacity admittance of ceiling; Y3 the self­
admittance of exterior walls; Y4 the heat capacity admit­
tance of indoor air; Hs the ratio of indoor temperature 
1';0 (or T b4) to outdoor temperature T0 (or Tbs); Z6 and Z 7 

the impedances of roof and air infiltration; Z 8 the trans­
fer-impedance of exterior walls. The small letters betoken 
numerical values, which are as follows: y 1 = 5.476 W/K; 
y9 = 3.593 W/K; y 10 = 4.311 W/K; y 11 = 1.655 W/K; 
Y12 = 29.802 W/K; Y1i = 85.233 W/K and y 14 = 19.282 
W/K. 

The steps to obtain the transfer function of a given 
thermal network are as follows : 

Step I. An independent source. such as outdoor tem­
perature and auxiliary heat, is replaced by a dependent 
source controlled by the output variable of interest. In 
this example, the outdoor temperature Tb 5 is first replaced 
with a dependent temperature source controlled by 
indoor temperature T b4• which can be expressed by 
-Tb4+HsTb5 = 0, according to Equation (3). 

Step 2. If necessary, the thermal network of a building, 
like Fig. I, a.nd its corresponding graphs of temperature 
and heat flow, like Fig. 2, may be drawn out and then a 
complete tree must be sc!ecred. Here, the branches from 
I to 5, bold lines in Fig. 2, are chosen as the tree. Note 
that only some edges, such as tree branches and cotree 
branches with symbolic parameters, should be oriented 
in the graph and that the tree branch with the dependent 
temperature source controlled by the temperature vari­
able does not necessarily need to form a fundamental 
cutset. For instance, branch S, a dotted line in the graph 
b of Fig. 2, is such a tree branch. 

Step 3. Following the formula (6), the system of ther­
mal balance equations can be established in the form of 
Equation (7) . In the example, the major submatrices are 
written as follows 
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ns Il6 

a. Graph of temperature b. Graph of heat flow 

Fig. 2. Graph corresponding to the thermal network in Fig. I. 

Yi 0 0 0 0 0 0 0 

0 Yz 0 0 0 -1 0 0 
0 0 Y3 0 0 0 0 -1 
0 0 0 Y. 0 0 -1 0 

A11 = 
0 0 0 -1 Hs 0 0 0 
0 I 0 0 -1 Zo 0 0 
0 0 0 -1 0 z~ 0 
0 0 0 0 -1 0 0 z8 

[ »o+y,.+y, -Y11 

Y = - J'11 Y11 +Y1z+ Y1• 
a 

-Y10 -Yiz 

-yq -y,4 

-y,o -)'9 

~] -Yiz -y,. 

Yro+ Y12+ Yn -y13 

-y13 Y9+Yn+Yr4 

[-! 
0 0 0 

~] -1 0 0 

-M= 0 -I 0 

0 0 -I 

0 0 0 -I 

Step 4. Because A"[ is nonsingular, Equations (8) 
through (10~ can be used to obtain the formula of a 
determinant of lower order in the form of Equation ( 11). 

Step 5. Search the submatrices V 12 and V 21 in Equation 
(l I) for nonzero entries and record the topological infor­
mation, i.e. the row and column indices of those entries 
with nonzero values. 

Step 6. If, like this example, some parameters of 
elements in the tree take numerical values, the generalized 
algorithm of Gauss is secondly applied to reduce the 
order of the coefficient matrix, otherwise skip this step. 

Step 7. According to the inequalities presented in the 
third section, invalid cancelling terms can be eliminated 
before calculating any determinant and if a symbol com­
bination is valid, Equation (12) is used to find its co­
efficient. 

Step 8. Having sorted out the terms with the distinct 

symbol H 5, we obtain the transfer function whose 
denominator is equal to the sum of these terms, multi­
plied by -1, and numerator to the sum of the rest (7] . 

The transfer function of T b4/Tb5 for the thermal net­
work in Fig. I is shown in Table 2 after the eight step 
calculations. 

For comparison. Sannuti and Puri's method has also 
been applied to this example. The result shows that 28 
invalid symbol combinations have to be generated before 
weeding them out while there is no invalid symbol com­
bination among those terms generated by the inequalities 
given in the third section. 

DISCUSSION 

As mentioned previously, the new method, like all 
the other methods for building energy analysis in the 
frequency domain, is based on the linearization of build­
ing systems. This assumption has been proved to be 
acceptable by Haghighat and Athienitis [5]. They com­
pared and validated the program BEEP [6], which uses 
frequency domain techniques, with TARP (Thermal 
Analysis Research Program) and with experimental data. 
BEEP produces the numerical transfer functions of build­
ings while the new method generates the symbolic ones. 
The two computer programs have also been compared 
with each other with the case described in the example. 
BEEP gives a more accurate result than the new program 
because it uses a more detailed building model (eight­
node model). A computer program for generating the 
symbolic transfer function of more detailed models is 
now under development. 

Although the thermal network in Fig. I only involves 
indoor air temperature, the new method may also be used 
to obtain operative temperature or resultant tempera­
ture. One may refer to [23) for a complete procedure for 
calculating operative temperature by means of network 
techniques. 

Symbolic transfer functions in the frequency domain, 
like H5 in Table 2, can be widely applied to building 
energy analysis and control studies. When all the com­
ponents of a system consisting of building, HV AC and 
control subsystems are represented by the Laplace trans-

f 
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Table 2. Symbolic Transfer Function H, = N(s)/D(s) 

NUMERATOR N(s) 

No. Coefficient Symbolic Term 

-l.34xlo-' 
2 1775.89 z, 
3 -7.07x 10-• z. 
4 1297.04 z, 
5 5.64 x 10- 1 Y,Z6 

6 15.04 Y,Z8 

7 76001.15 z.z. 
8 78575.95 z,z. 
9 74532.95 z.z, 

10 1775.89 Y,z.z, 
11 1297.04 Y,z.z, 
12 760.17 Y3Z6Z8 

13 315.54 Y,z,z, 
14 261235.90 z.z,z, 
15 15.04 Y,Y,z.z, 
16 4360.48 Y,z.z,z, 
17 1173.07 Y,z.z,z, 
18 19.67 Y,Y,z.z,z, 

fer function, the frequency response analysis is readily 
performed. For instance. the yquist plocs may be drawn 
oul to study the frequency response characteristics of 
the dynamic control system of buildings and to design 
feedback controllers [6] . ln addition. when the Laplace 
transform variables is set equal to jw, where j = ( - I) 11 2 

and w is the frequency, the simulation of room air tem­
perature or energy consumption in the time domain can 
be easily carried out by means of superposition of the 
individual harmonic components [l]. Moreover, the eq ui­
valent z-lransfer functions for the digital control of 
dynamic building systems can be obtained through one 
of the approaches, such as pole-zero mapping and hold 
equivalence [21]. Furthermore. the time domain response 
of buildings can also be found from the frequency domain 
transfer function by means of the numerical Laplace 
transform inversion (6, 17]. 

Several efficient procedures may be incorporated in the 
computer program for automatic formulation and solu­
tion of given building models. First, the thermal network 
of buildings can be identified by the computer program 
only according to the input information, such as the 
number of interior surfaces of a room, symbolic and 
numerica.1 parameters. Second, such heat sources as solar 
radiation may be automatically modeled by inpulling the 
fractions projected on each of the interior surfaces of the 
room. Third, a computer procedure given in reference 
[20] for automatically choosing a complete tree of the 
network may be adopted with minor modification. 

DENOMINATOR D(s) 

Coefficient Symbolic Term 

1775.89 ZR 
15.04 Y,Z, 

76001.16 z.z. 
78575.95 z,z. 

1775.89 Y,Z6Z8 

760.17 Y,z.z, 
1612.59 Y,z,z, 
1775.89 Y,z,z, 

261235.30 z.z,z, 
15.04 Y,Y,z.z, 

78575.95 Y,z.z 1z, 
15.04 Y3Y4Z1Z, 

75706.10 Y,z.z,z, 
76001.16 Y,z.z,z, 

1612.59 Y,Y,z.z,z, 
1775.89 Y,Y,z.z,z, 
760.17 Y,Y,z.z,z, 

15.04 Y,Y,Y,z.z,z, 

Finally, the regulations described in the second section 
for selecting tree and cotrec branches should also be 
included so that lhe system equations (6) can be appro· 
priately generated by computer. When all of the above 
procedures have been combined wilh the symbolic extrac­
tion program. it needs little effort and knowledge of 
the network theory to carry out tht.: lhi:nnal design and 
control studies of buildings with the symbolic network. 
analysis technique. 

CONCLUSION 

A systematic method for the symbolic transfer function 
of buildings has been developed. Because thermal net­
works of buildings have their own characteristics. a new 
fonnulation is presented by introducing the concept or 
a generalized-node admittance matrix and utilizing tbe 
topological information of a given network appro­
priately. It can grea tly reduce the size of the coefficient 
matrix for the detailed thermal network or buildings as 
compared with any existing hybrid system of equations. 
An efficient algorithm based on both the new formulation 
and Sannuti and Puri s algebraic method is further 
developed. The example shows that all of invalid symbol 
combinations of a given thennal network are eliminated 
before calculation. In a general case, it can be predicted 
that the new method may eliminate more cancelling terms 
than the others. This will lead to more efficient generation 
of semi-symbolic transfer functions of buildings. · ,, 
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APPENDIX A 

Theorem I (Laplace's theorem of a determinant) (17): Con­
sider a square matrix of order n. If any k (I ~ k ~ n-1) rows 
uf A are selected, each of all possible k-ordcr minors taken from 
these rows is multiplied by its cofactor and then the sum of these 
products is equal to the determinant of the matrix A. 

I is an m x m identity submatriit : (i) is a set of the indices of 1, 
rows deleted from the submat rix I : (j) is a set of the indices of 
m 1 columns deleted from tbe submatrices A 1 and I. Then. the 
dctcm1inant of A could be nonzero only ifm - 11 ~ m - m , and 
if U) is either a subset of Li) or the same as (i). Under this 
condilion . the determinant of A is obtained by 

APPENDIX B 

Theorem 2 (131 : Consider a partitioned matrix A of the form 

A= [Aim A2
] 

luim 0 

where A, and A2 are I x m and Ix m 2 submatrices, respectively: 

where 
m - 11 

p=l(m-1,)+ L (k.+n); 

·-· 
(j+k) denotes a set of the indices of columns deleted from A, 
and the sum of the two sets (j) and (k) ; (k) is a set consisting of 
k0 (n is from I to m-1 1) and the complement of the set (i) in 
the submatrix I. 


