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ABSTRACT

This paper discusses the role of models and
simulations in the perspective of the real-time control
of complex buildings. It describes the approach used
in the model engineering of the SEAM4US EU
research project, concerned with the optimal control
of the Passeig De Gragia metro station systems in
Barcelona. The paper introduces the model predictive
control (MPC) architecture and the main features of
the large Modelica station model, made of over
80000 variables. It then details the statistical model
reduction methodology adopted either for mapping
the large station model into a deployable sensor
network, and for embedding the model into the main
control loop.

INTRODUCTION

In the last 10 years Model Predictive Control (MPC)
spread over the building domain (Henze et al., 2005)
(Coffey et al. 2010) (Oldewurtel et al., 2010) (Ma et
al.,, 2010) (Hailemariam et al., 2011). MPC is an
advanced control technique (Maciejowski, 2002)
which, when applied to buildings, employs a model
of the building dynamics to solve an optimization
problem aimed at determining the optimal control
inputs.

The MPC approach is being used in the EU-funded
research SEAM4US (Sustainable Energy
mAnageMent for Underground Stations). Its
objective is the development of an advanced control
system for subway stations capable of setting up the
internal environment in an optimal way, based on the
forecasts regarding the external environment, the
passenger flow and according to energy efficiency,
comfort and regulation requirements (Figure 1).
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Figure 1 - SEAMA4US MPC architecture

The particular application domain raises a number of
modelling issues that make the development of the
integrated station model a challenging engineering
task (Ansuini et al., 2012). In fact, the modelling
process involves multi-physics models with multiple
time scales, different levels of detail and large spatial
dimensions. The real-time management of the metro
station underground space requires that models are
able to support the human controller with scenario
analysis, which means they must be robust, invertible
and able to propagate uncertainty throughout the
computational chain (Giretti et al., 2012). Finally, the
run-time deployment of the models into the control
loop imposes that models are computationally
efficient, that they have a manageable size, and, most
important, that they could be mapped into a
deployable sensor/actuator networks. This last
requirement deserves a specific attention because, in
our case, it drove the development of a tailored
model reduction methodology. The real-time control
of the metro station systems requires that the model
input and output variables correspond to physical
parameters that can be either measured or controlled.
In real-world applications this. fact imposes a number
of exogenous constraints, like for example the size of
the sensor network, the cost of the sensor equipment,
their robustness to vandalism, etc. that cannot be
easily represented in a pure analytical model
reduction procedures (Antoulas et al., 2001; Moore,
1981; Sandberg, 2006; Stykel, 2004, Vandendorpe et
al., 2004). In addition, the highly nonlinear event-
based Modelica model made the application of such
procedures practically unfeasible. Therefore a
specific multi-stage model reduction methodology,
based on statistical cluster analysis, has been
developed.

This paper describes the approach used in the model
engineering of the SEAM4US EU research project,
concerned with the optimal control of the Passeig De
Gragia (PdG) metro station systems in Barcelona.
The paper introduces the modelling workflow used to
develop the MPC system and the main features of the
large Modelica station model. It then details the
statistical model reduction methodology adopted and
discusses the structure and the performances of the
resulting Bayesian Networks models. This research
has been funded under EU grant n. 285408.
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THE MODELING WORKFLOW

The SEAM4US model engineering foresees two
modelling cycles (Fig. 2), starting from the findings
of a preliminary modelling phase, a sensor network is
designed and deployed in the environment. In
parallel the models are developed: a Whole Building
Model, including airflow, heat transfer and lighting
physics, is developed and validated against standard
reference simulation tools and probabilistic models
for the real-time control. The main role of the Whole
Building Model is to provide support for the
development of the stochastic Bayesian Network
Model through a model reduction process. The
stochastic model will be the core of the control
system (Oldewurtel et al. 2010; Choudhary, 2011),
providing performance forecast, adaptivity and
decision support.
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Figure 2 - Phases of one of the two modelling cycles
of the SEAMA4US environmental model engineering
process.
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Both the whole building and the stochastic models
will be fine-tuned as soon as the sensor data is
available. Finally, the whole cycle is repeated,
updating components and systems, until a satisfying
performance grade is reached.

THE WHOLE BUILDING MODEL

The Whole building model (WBM) of the Passeig
De Gragia station was developed in the Dymola
(Modelica-based) simulation environment, using the
Buildings Modelica library (Wetter et al, 2009;
Wetter et al. 2011; Nouidui et al. 2012). The building
library has been extended in order to represent
underground spaces and subway stations equipment.
The top level block of the Dymola model of the PAG
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north (N) station (Figure 3) is composed by the
transit spaces (platform (P), hall (H), corridors (C))
and building and systems components of the station
(entrances, doors, equipments). The main space is the
platform of Line 3 (PL3), as it contains the main
disturbances (trains and high number of people) and
the equipment to be controlled (fans, lights and
escalators).

Extension of the Buildings Modelica library

In order to suit the simulation of underground spaces,
the Buildings Modelica Library was extended by
developing some new components and by
customizing some existing cormponents.

The development of new components involved:

e horizontal openings to simulate airflows across
large horizontal openings with the possibility of
two-way flow by combining forced and
buoyancy airflows together an horizontal
opening component has been developed, mainly
inherited from a NIST report presented by
(Cooper, 1989). The sloping plane (Bolmgqvist
and Sandberg, 2004) portion of the model was
added to represent staircase;

e internal gains, managing the heat gains due to
people, lighting, specific equipment and the
trains;

e  frain manager, aimed at include the train effects

in terms of airflow, heat and pollutants,
combining a set of schedules to other
components  (differential  pressures, trace

substance sources, heat gains).

Furthermore some customizations were needed,
mainly in relation to airflow components, such as
airflow tolerances (as the subway station has higher
value of mass flows than a common building, the
tolerance must be kept higher), initial values and the
enhancement of the component modelling wind
pressure (OutsideCp), including specific input data
for wind pressure coefficients.

The WBM Model

The actual release of the WBM is composed by 7206
components and 86397 variables of which 1443 are
constants, 62902 are parameters and 22052 are
unknowns.
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Figure 3 - Top Level of the Dymola WBM of PdG North Station: Platform(PL3), Halls (HNx), Corridors (CNx)
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The platform component (PL3) of the Modelica
model has 398 components and 4947 variables of
which 70 are constants, 3472 are parameters and
1405 are unknowns. The WMB model was
preliminarily calibrated through a set of data
collected in a two-day survey. The sensor network
was deployed in December 2012 and the extensive
calibration phase is on-going. The preliminary
simulation results have been used to guide the
definition of the stochastic models in the first
iteration cycle of the model engineering workflow.

The simulation results pointed out that the platform
PL3 showed the worst environmental condition and
energy consumption, and that consequently it can be
used as the reference environment for the initial
development of the model. The simulations showed
also that the temperature trend is clearly dependent
on the previous states (due to inertial process), and
that the airflow process can be considered practically
instantaneous.

THE WBM MODEL REDUCTION

After the preliminary calibration phase, the Modelica
model was able to simulate all relevant physical
processes with acceptable accuracy, so it was used as
the basis for the development of the preliminary
stochastic model through model reduction. As we
have already annotated the pure analytic techniques
for model reduction do not apply to our case for a
number reasons:

- the extremely reduced number of deployable
sensors, which imposes a significant cut on the
number of model inputs and outputs;

- the high nonlinearity of the event based Modelica
model of the station, which let the matrix change
possibly at each simulation step, hindering the
practical possibility of computing the Gramians
(Sandberg et al., 2008; Stykel, 2004);

- the exogenous and qualitative constraints
imposed by practical aspects like costs and

vandalism, which strongly influence the selection
of the input and output variables.

Therefore, a two-step procedure, combining a
knowledge-driven and a data driven model reduction
phases, was defined, using respectively two sources
of information: the model structure and the results of
large simulation sets. In both cases, the rationale of
the reduction procedure was to minimize the
information loss due to wariable reduction by
clustering variables that correlate and to select a
representative (i.e. synthetic variable) for each group.
The variable clusters are computed in the first case
based on the model structure, and in the second case
by means of statistical clustering techniques. The
representative of each class is selected based on its
compliance to the exogenous qualitative constraints.

Knowledge-driven reduction

Since the scope of the project is mainly focused to
the platform and the preliminary simulation results
showed that the physical processes in the platform
are quite representative of the behaviour of the whole
station; the initial variable reduction process was
limited to the set of variables related to the platform.
The platform component (PL3) has 4947 variables of
which 1405 are unknowns.

The knowledge-driven phase used the model
structure as its clustering mean. Almost every
component of the Modelica model has a hierarchical
structure, thus each variable is computed with nested
variables. For instance, the variable “mean air
temperature of the room” (heaPorAir) is the result of
combined physical processes consisting of heat
transfer (conduction, convection, infrared radiation,
etc.) and of fluid dynamics (air balance) components
(Figure 4). Therefore, a topmost variable is
necessarily correlated to a number of inner variables,
and it is consequently representative of their
combined behaviour.
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Figure 4 - Example of model structure in relation to the variable heaPorAir (air temperature)
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The selected topmost variables have been arranged
according to the fact that they were:

e input variables, representing the driving features
of the specific system (weather, trains, number
of people, fan control inputs);

e  state variables, in relation to the main physical
processes: heat transfer (air temperature, surface
temperature, heat gains), fluid dynamics
(airflows, pressure drops related to airflow
resistance, geometrical features and buoyancy),
pollutant  diffusion (CO2 and PMIO
concentrations);

e output variables: energy consumptions, air
change rates, comfort.

At the end of the first phase a set of 97 variables
were selected. Despite the extremely severe reduction
rate, this set is still too large for being completely
coupled with a monitoring sensor network.
Furthermore some of these variables cannot be
directly and easily measured such as the local
pressure drop due to geometrical features of the
space. So a further phase of variable reduction was
performed through a statistical clustering.

Statistical Clustering

Statistical clustering was used to find out ‘far’
correlations among variables, that is, correlation that
cannot be induced from the equation structure of the
model and that can be identified only by means of
simulation results. Several steps of statistical
clustering were performed using the ClustOfVar
(Chavent et al., 2011) package of the R software (R-
project, 2012).

In this package, two methods are used for the
clustering of variables: a hierarchical clustering
algorithm and a k-means type partitioning algorithm.
A cluster of variables is defined as homogeneous
when the variables in the cluster are strongly linked
to a central quantitative synthetic variable. This link
is measured by the squared Pearson correlation for
the quantitative variables and by the correlation ratio
for the qualitative variables. Using this aggregation
measure, the algorithm builds a hierarchy, called
dendrogram. In a dendrogram, the height (y axis) is
the dissimilarity, measuring the loss of homogeneity
observed when two clusters are merged.

The statistical computations are based on a dataset
consisting of simulation results of the Modelica
station platform model run for one month (April) and
a time step of one hour. The weather conditions were
derived from the IWEC weather file (ASHRAE,
2001), internal gains were set to typical values
achieved from the station manager and a random
schedule was used as control input for ventilation
equipment, in order to excite the relevant process
dynamics.

Figure 5 shows the cluster dendrogram for the initial
set of 97 wvariables, which manifests a clear

separation in two groups of variables. The two
groups are related to the two main physical
processes: thermal (cluster on the right of figure 5)
and airflow (on the left of figure 5). The left side of
the cluster dendrogram is composed by variables
related to the airflow and to the fans, like pressure
drop, volume flow rate, net flow and air change rate
and fan power. The right hand of the dendrogram
contains variables related to the thermal process, like
internal heat gains, mean air temperature and surface
temperature, comfort related variables and the
weather variables (dry bulb temperature, relative
humidity, wind speed, etc.). It also contains the
variables representing the pressure drops related to
the different heights (that is the driving mechanism
of the buoyancy effect is included in the reduction).

The clustering process proceed iteratively. At each
step, the resulting clusters were analysed and some
variables were deleted or replaced with synthetic
ones when a cluster contained:

e variables of the same physical quantity (e.g. all
the pressure drops due to buoyancy);

e variables contributing to the same physical
process (e.g. airflow and pressure drops through
an opening);

e variables correlated by the spatial topology of
the building.

The two sub-clusters were analysed separately.
Figure 6 represents the last step of “thermal cluster”,
consisting of 17 variables. There are three groups of
variables well correlated each other and that can be
quite easily connoted. In fact, all the variables related
to temperature are grouped (“temperature
differential” zone in Figure 6): buoyancy pressure,
Fanger Comfort Index (PMV and PPD), zone
temperature and outdoor temperature. This is quite
interesting because it points out that the buoyancy
process and weather condition are related to the zone
temperature and to the thermal comfort. This
suggests that outdoor and indoor temperature
variables are sufficient to represent these aspects. A
further group emerging is the one called “heat gains”
in Figure 6. This group contains variables
representing the trains, the people and the gains from
the other equipment. The PM10 concentration is
contained in this group as well. This variable is not
considered so far, as the pollutant model will be
developed during the next project year. The last
group of variables refers mainly to external weather.
Finally, the first branch on the left is weakly
correlated to the others and contains the surface
temperature, the external pressure and the static
pressure of the platform.

Concerning the “airflow cluster” (Figure 7) it can be
noticed that all the variables related to the tunnel are
grouped and are not strongly correlated to the other
variables. The other variables are mainly divided in
two groups, related to the station fans (only exception
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Figure 5 — Bird-eye view of the dendrogram of the initial set of 97variables
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Figure 6 - Final Thermal Cluster (17 variables)
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is CO2, not being considered at this stage) and
“natural ventilation” considering the airflow passing
through the corridors. Among them, the variable
airChgNat, as it is the sum of the airflows from the
corridors, will be omitted.

THE PROBABILISTIC MODELS

The last stage of the model-engineering phase
consisted in the development of PdG-L3 station’s
stochastic models, in particular Bayesian Networks
(BNs) (Murphy, 1998) (Korb, 2004), which natively
provide uncertainty management, machine-learning
capabilities and, consequently, offer a good basis for
adaptivity and decision support have been adopted.
The clustering process guided the development of the
Bayesian models.

Theoretically, a unique Bayesian model could have
been developed including all the physics and
dynamics occurring in the station. However, the
clustering clearly showed the possibility of
considering separately the two main physics (heat
transfer and fluid dynamics). Since these various
physics have different time-scales, in order to reduce
the structural complexity of the single model, two
different BNs are used.

Since the simulation results showed that there is a
correlation between instantaneous values of
temperature and airflows, thus the Bayesian Models,
are connected by shared variables during
simulation.This correlation is physically explained
also by the fact that in PdG subway station the
mechanical ventilation system, is in charge of both
air quality requirements and thermal comfort.

For this reason, both networks share five variables:
three variables for the Outdoor Weather
(Temperature, Wind Speed and Wind Direction),
Platform Air Temperature (70PL3, TemPL3) and
Platform Net Flow (NFIPL30, NFIPL3).

_-/J S

The Thermal Bayesian Network

The thermal Bayesian Network is depicted in figure
8. The thermal clustering set suggests that the
variables related to the differential temperature
between the indoor and the outdoor spaces
(TOuMet0), and one single variable representing the
cluster of the overall internal heat gain (NPeSta0 -
number of people, in this preliminary release) capture
the main thermal gains of the station. Furthermore,
the WBM simulation results confirmed that the
thermal state of the station dynamically depends on
previous states. Therefore nodes for three previous
time steps, each lasting 1 hour, were added (7m3PL3,
Tm2PL3, etc.). Finally, considering that WBM
simulation showed in some cases different trends of
the temperatures in the platform and in the other
main halls, the actual and previous temperatures for
the four other main halls were added (T1HNI,
Tm3HNI, ..., TISLb, TM3SLb, etc.).

The resulting Thermal BN is able to predict the
temperature in the platform, halls and critic spaces
with a time step of one hour.

The Airflow Bayesian Network

The airflow Bayesian Network is depicted in figure
9. The Air Flow clustering shows that both
mechanical ventilation variables and airflow path
variables must be considered. Thus, the current
airflow DBN  estimates the Air Change Rate
(NetFlow in PL3 — NFIPL3) in the platform and the
Fan Energetic Consumption (for 2 Tunnel Fan and 1
station fan — PEITFal, PEITFa2, PEISFal) at the
current time 7. The estimation is carried out on the
basis of the external weather conditions (WiDMet,
WiSMet, TOutMet) , the temperature in the platform
(TemPL3), and the Fan Input Frequency (freTFal,
freTFal, freSFal). The combination of these seven
inputs defines the state of the four outputs (PEiTFal,
PEITFa2, PEISFa3, NFIPL3).

—(ToPL3 )=

CTosts =407

Figure 8 — The thermal dynamic BN
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Figure 9 — the Airflow static BN

The BN Learning Phase

The current BNs have been trained on a data-set
made of a one year simulation (amounting at 52392
cases) of the Modelica model, run with a time step of
600s, considering weather retrieved from the DOE-
US weather file and fan inputs derived by the actual
schedule of the pilot station. The resulting data set
was split in two parts, the assessment dataset (with
13098 cases, about 25% of the data) and the training
data set (with 39294 cases, about 75% of the data).

The Prediction Process

When the monitoring network will be deployed and
integrated into the control system, the actual state
will be retrieved in real time from the measured value
obtained by the sensors. The BN models can then
predict the state of the station one hour later (#+1) on
the basis of the actual state (f) and of previous
recorded states (t-1, #2, #3). If the prediction
requested by the controller lasts more than 1 hour, an
iterative prediction process with one hour time step is
employed.

BN Preliminary Assessment

A preliminary assessment of the Bayesian Models
was performed by evaluating the mean error of the
prediction. The error relative to a typical value [%]
(TypValErr) is computed as the mean value of the
absolute error (Resgy - Reswpn) with respect to a
typical nominal value (7ypVal) calculated as the
mean of the value set. The following equation was
used:
avg(|Resgy — Reswgn|)

TypValErr = 0
ypYaETr TypVal [%]

The particular choice of the performance index was
necessary because the range of some variables is
quite large (mostly order of thousands), therefore
high percentages in low absolute values are not
relevant to the aim of the energy saving estimation.
The typical value TypValErr was computed as the
mean absolute value of a data set composed by 13248
cases (3 months).An automatic procedure was
implemented using the HUGIN API Active X Server

for Visual Basic (HUGIN Expert A/S, 2012). The
developed script instantiates the Bayesian Network,
propagates evidences for each record of the data set
and returns the estimated values and the related
variances. Then the error, the relative error, and the
standard deviation (StDev) are computed. The
average values among the errors of the whole set are
reported in Table 1 for the two BNs. The mean
percentage errors are between 2-7% for the main
output variables, that is, comsidering we are at a
preliminary stage of the process, an appreciable
result.

Table 1 - Performance Data about Thermal and
Airflow BNs

THERMAL T1 T1 T1 T1 T1
PL3 HN3 HN2 HN1 SLB

TypValEr | 592 | 484 | 393 |219 |552

TypVal 220 [190 [220 [173 [213
StDev 216 | 166 | 140 [0.72 [ 191

PEL PEL PEL | NFL
AIRLFOW | 7ra1 TFA2 SFA1 | PL3
TypValEr | 5.85 6.81 3.44 5.65
TypVal 5920 6178 3999 22.35
StDev 2758 2958 1670 3.98
CONCLUSION

This paper described the approach used in the model
engineering of the SEAM4US EU research project,
concerned with the optimal control of the Passeig De
Gragia metro station systems in Barcelona. The
paper detailed the statistical model reduction
methodology adopted and discussed the structure and
the performances of the resulting Bayesian Networks
models. The preliminary assessment reported that the
first release of the hardly reduced Bayesian Network
models introduce an average error of about 5% with
respect to the Modelica model simulation results,
allowing on the other side uncertainty management,
model inversion and adaptivity. In next months the
first release will be improved, working on the

- 1800 -




Proceedings of BS2013:

13th Conference of International Building Performance Simulation Association, Chambéry, France, August 26-28

optimization of the Bayesian Models either in term of
the model structure and variable domain
discretization. The overall structure will be
completed introducing the pollutant representation,
and will be calibrated with measured data as soon as
data from the sensor network will be available.
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