

01 Building airtightness

- Introduction

☐ It was not investigated and discussed in China until 20 years ago

Most studies focus on the northern regions (Severe Cold / Cold regions)

Fig. 1 Climate map (Koppen-geiger map world future. svg)

Airtightness indicator

 $\stackrel{\frown}{\sim} N_{50}: h^{-1}$

 Q_{50} : m³/(m²·h)

- Requirements and Drivers

Building airtightness requirements in the regulation

- GB/T 34010-2017: airtightness testing
- GB/T 7106-2019: doors and windows
- T/CECS 704-2020: whole building airtightness is graded

Table 1: The classification of the whole airtightness of buildings under natural pressure difference.

Level	1	2	3	4	
Value/	N>0.3	0.2 <n< td=""><td>0.13<n< td=""><td>0.08<n< td=""></n<></td></n<></td></n<>	0.13 <n< td=""><td>0.08<n< td=""></n<></td></n<>	0.08 <n< td=""></n<>	
h-1	N>0.3	≤0.3	≤0.2	≤0.13	
Level	5	6	7	8	
Value/	0.05 <n< td=""><td>0.03<n< td=""><td>0.015<n< td=""><td>N<0.015</td></n<></td></n<></td></n<>	0.03 <n< td=""><td>0.015<n< td=""><td>N<0.015</td></n<></td></n<>	0.015 <n< td=""><td>N<0.015</td></n<>	N<0.015	
h-1	≤ 0.08	≤0.05	≤0.03	1 1 <u>0</u> .013	

3

3

01 Building airtightness

Building airtightness requirements in the regulation

Table 2: Airtightness requirements for ultra-low and nearly-zero energy buildings (GB/T 51350-2019)in different climate regions

	N_{50} / h ⁻¹			
	Ultra-low energy buildings/			
Climate region	Nearly zero energy buildings			
	Residential	Public		
	buildings	buildings		
Severe cold region	≤0.6	≤1.0		
Cold region	≤0.6	≤1.0		
Mild region	≤1.0	-		
Hot summer and cold winter region	≤1.0	-		
Hot summer and warm winter region	≤1.0	-		

Fig. 2 Distribution of the five climatic regions for building design in China.

01 Building airtightness

- Requirements and Drivers

- Incentive for building airtightness
 - Energy agencies in the capital cities of each province.
- Building airtightness justifications
 - T/CECS 704-2020, GB/T 34010-2017
 - · Fan pressurization method, tracer gas method
- Sanctions
 - · No mandatory requirement

Fig. 3 DG1000 blast door air tightness test system

5

5

01 Building airtightness

- Building airtightness in the energy performance calculation

- Calculation
 - DeST (*a energy performance calculation tool*): inputting specific airtightness values of the whole building or windows.
- DeST
- Obtained by the tests based on the standards GB/T 7106, GB/T 34010, and T/CECS 704.
- Default values
 - T/CECS 704-2020

01 Building airtightness

Building airtightness test protocol

Qualification of airtightness testers

· No qualification scheme

National guidelines

• ~2020: ISO 9972

• 2020~: T/CECS 704-2020

Requirements on measuring devices

Table 3: Requirements for the accuracy of the measuring devices in Chinese standards.

	Accuracy requirements			
Standard	Pressure measuring devices	Temperature measuring devices	Airflow measuring devices	
GB/T 34010- 2017	±2 Pa	±1.0 K	Below ±7%	
T/CECS 704-2020	±2 Pa	±0.2 K	-	

— Building airtightness tests performed

Northern region

• ~2020: Most of the buildings have serious air leakages

• 2020~: Moving towards a higher level of airtightness and energy efficiency

Fig. 4 Distribution of the five climatic regions for building design in China.

7

02 Ductwork airtightness

- Introduction

The air leakage ratio of ductwork of HVAC systems: around 18% in China

Poor joints of ductwork is often as high as 10% to 15%

Airtightness indicator

 \triangle Air leakage rate $Q: m^3/(m^2 \cdot h)$

$$Q = 3600 \cdot \varepsilon \cdot \alpha \cdot A_{n} \cdot \sqrt{\frac{2\Delta P}{\rho}}$$

- expansion coefficient ε
- flow coefficient α
- opening area A_n
- differential pressure ΔP
- the air density ΔP

Requirements and Drivers

Ductwork airtightness requirements in the regulation (GB 50243-2016)

Table 4: Air leakage constant and air leakage limit per unit surface area for different types of ductworks (A is the rectangular metal duct; B is the round metal duct).

Ductwork type	P value	Air leakage constant		Permitted air leakage rate/ m ³ /(m ² ·h)	
		A	В	A	В
Low pressure ductwork	<i>P</i> ≤500	0.1056	0.053	≤0.1 056P 0.65	≤0.05 28 <i>P</i> 0.65
Medium pressure ductwork	500≤ P ≤1500	0.0352	0.018	≤ 0.0 $352P$ 0.65	≤ 0.01 $76P$ $= 0.65$
High pressure ductwork	<i>P</i> ≥ 1500	0.0117	0.006	≤ 0.0 117P 0.65	≤ 0.01 17P 0.65

02 Ductwork airtightness

- Requirements and Drivers

- Incentive for ductwork airtightness
 - · No information is available
- Ductwork airtightness justifications
 - Ductwork airtightness is tested usually when problems arise and the owners or managers permit it.
- Sanctions
 - No severely penalized

Ductwork airtightness in the energy performance calculation (lack attention)

Ductwork airtightness test

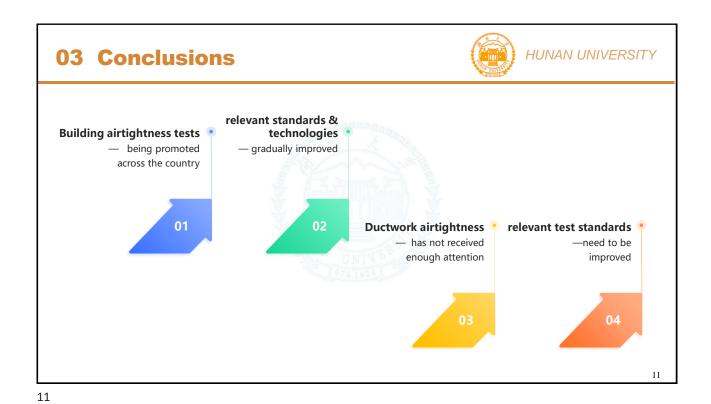
- Qualification of ductwork airtightness testers
 - No qualification scheme
- National guidelines
 - GB 50243-2016: ductwork inspection
 - GB 50591-2010: airtightness tests (only for the cleanroom air conditioning systems)
- Requirements on measuring devices
 - GB/T 2624-2006: for round duct
 - GB/Z 35140-2017: for rectangular duct

٥

9

02 Ductwork airtightness

- Ductwork airtightness tests performed


- Tested ductwork
 - · Few large-scale tests
 - · Constant pressure test method

$$Q_0 = Q(P_0/P)^{0.65}$$

- air leakage rate at a specified pressure Q_0
- measured air leakage rate Q
- prescribed working pressure for ductwork tests P₀
- · tested pressure P

Guidelines to build airtight ductwork

- GB 50738-2011, JGJ 141-2017 [35]
 - material selection, production, installation and inspection, etc., are stipulated.

