NRC-CNRC

A controlled intervention study in two Canadian schools: ventilation and air cleaning for the control of infectious aerosols and particles indoors

Prepared by: Grace Zhou¹, Wenping Yang¹, Chang Shu¹, Jeff Smyth¹/Justin Berquist¹, Greg Nilsson¹, Crystal Fulton², Alex Ko², Vincent Brochu³, Marc Veillette³, and Caroline Duchaine³

¹National Research Council Construction Research Centre

²National Research Council Medical Device Research Centre

³Université Laval

Prepared for: AIVC Workshop "Indoor Environmental Quality in Sustainable Buildings" April 1-2, 2025

National Research Conseil national de recherches Canada

Canada

1

Study design to validate the benefit and impact of using HEPA-based portable air cleaners

A collaboration with a Provincial Government

Two schools: similar baseline ventilation systems (1 section with mechanical ventilation and 1 section without), ~30 rooms, built in late 1950s, ~300 occupants.

Intervention: In the intervention school, portable air cleaners with a HEPA filter were deployed each classroom and common areas (i.e. library).

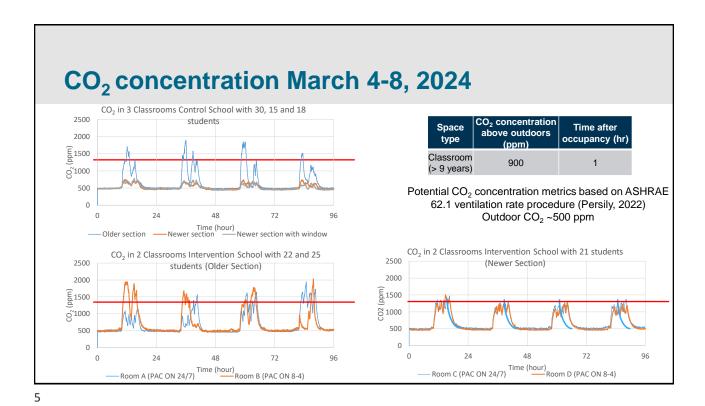
Control: A second school with baseline ventilation functioned as the control.

Outcomes: 1) Particle (PM1.0 and PM2.5) concentration, CO₂ level, power consumed by PACs, filter efficiency, and airborne and surface sampling of respiratory viruses and bacteria. 2) Aggregate absenteeism due to illness.

Time: April-June 2023, filter changed in August 2023, September 2023 to June 2024.

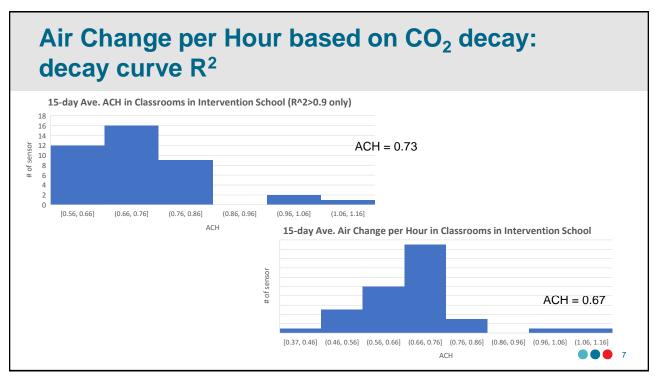
Instrumentation and measurement parameters

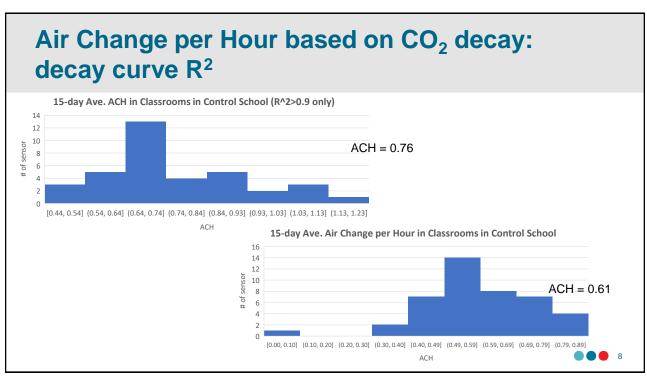
- Airflow rates of PACs were measured in each room (adding equivalent clean air ~2.5 ACH).
- 11 PACs were installed with a timer (08:00-17:00), 11 PACs were not controlled by a timer, on 24/7.
- Airflow rates from centralized HVAC system supply/return grills were measured.
- Plug power consumption, indoor/outdoor CO₂, PM1, PM2.5, PM10, RH, and T are continuously monitored.
- Airborne and surface respiratory viruses and bio-marker sampled in March 4-8, 2024.

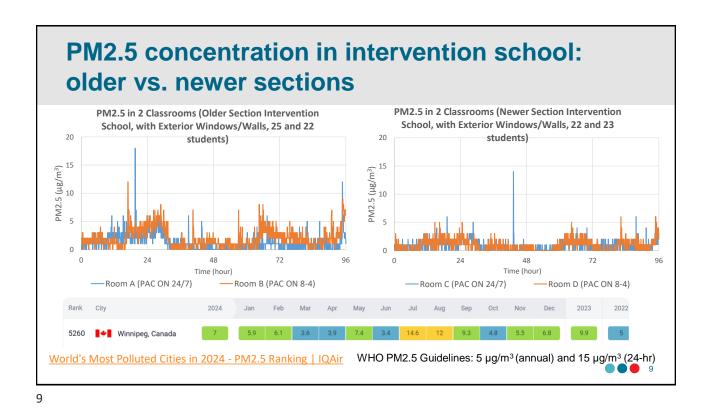

3

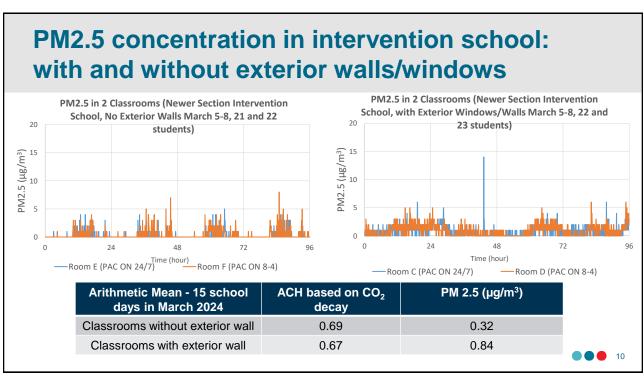
NATIONAL RESEARCH COUNCIL CANADA

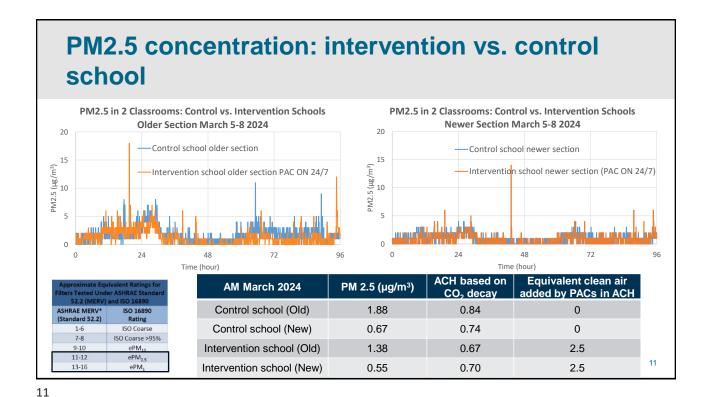
Results and discussion


- CO₂ concentration, decay after school, and air change per hour
- PM2.5 concentration
- · Viruses and biomarker sampled
- Absenteeism due to illness






Air change per hour based on CO₂ decay: time period


Date	startTime	endTime	ACH	R2	startTime	${\bf endTime}$	ACH	R2		
2024-03-04	16:01:49	16:59:28	-0.60	0.60	17:01:49	17:59:27	-1.04	0.96	•	Thermostat setting:
2024-03-05	16:01:49	16:59:29	-0.72	0.70	17:01:50	17:59:28	-1.10	0.97		fan switch from ON
2024-03-06	16:01:50	16:59:28	-0.42	0.45	17:01:49	17:59:28	-1.08	0.99		to Auto after 6 PM.
2024-03-07	16:01:49	16:59:29	-0.27	0.40	17:01:50	17:59:29	-0.96	1.00		Outdoor oir domnor
2024-03-08	16:01:50	16:59:28	-0.41	0.51	17:01:49	17:59:29	-0.92	1.00	•	Outdoor air damper
2024-03-09										position unknown.
2024-03-10									•	An exploratory
2024-03-11	16:01:50	16:59:29	-0.79	0.80	17:01:50	17:59:29	-0.88	0.99		exercise to use
2024-03-12	16:01:50	16:59:29	-0.65	0.72	17:01:50	17:59:30	-0.96	0.98		existing data to
2024-03-13	16:01:52	16:59:30	-0.92	0.79	17:01:52	17:59:30	-1.03	0.98		quantify outdoor air
2024-03-14	16:01:51	16:59:30	-0.63	0.90	17:01:51	17:59:30	-0.26	0.49		ventilation rate – can
2024-03-15	16:01:51	16:59:31	-0.61	0.90	17:01:52	17:59:30	-0.12	0.11		
2024-03-16										be a challenge in
2024-03-17										large buildings.
2024-03-18	16:01:52	16:59:31	-0.02	0.00	17:01:52	17:59:31	-1.19	0.98	•	More data points
2024-03-19	16:01:52	16:59:32	-1.25	1.00	17:01:53	17:59:32	-0.71	0.90		(locations and time)
2024-03-20	16:01:53	16:59:32	-0.86	0.72	17:01:53	17:59:32	-1.17	0.96		can help address
2024-03-21	16:01:53	16:59:32	-0.65	0.54	17:01:53	17:59:31	-1.14	0.96		uncertainties.
2024-03-22	16:01:53	16:59:32	-0.86	0.75	17:01:53	17:59:31	-1.10	0.98		
										8

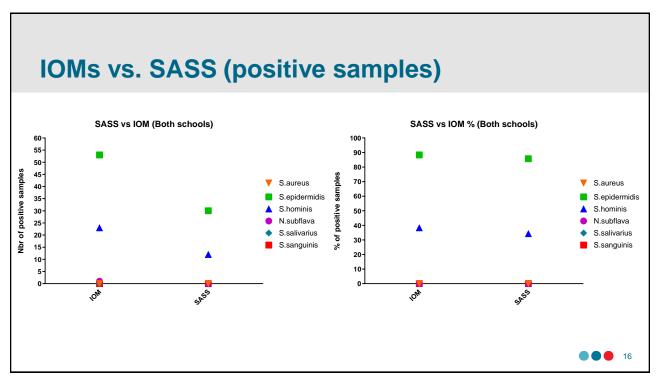
PAC's ability to reduce indoor particle concentration during wildfire events in 2023 $PM_{removal\ efficiency} = 1 - \frac{PM_{indoor}}{PM_{outdoor}}$ Outdoor Indoor **Outdoor** Indoor PM1 PM2.5 PAC PM1 PM1 PM2.5 PM2.5 School removal removal **Date** (Y/N) conc conc conc conc efficiency efficiency $(\mu g/m^3)$ (ua/m³)(ua/m³) (ua/m³) Control Ν 22.07 14.97 32.11 15.55 0.29 0.48 May 16, Intervention Υ 9.26 2023 24.65 34.07 9.69 0.61 0.70 ■ Winnipeg, Canada **1**2

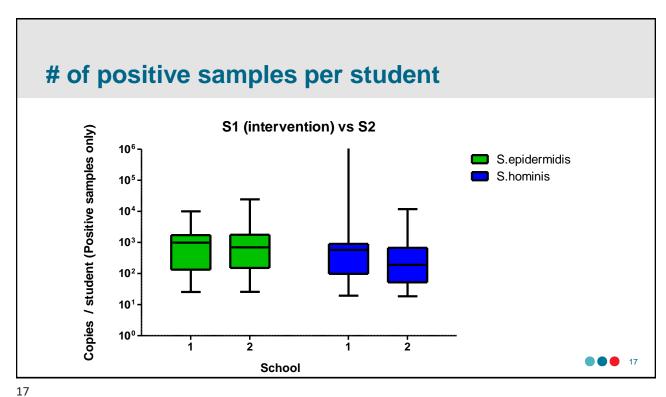
Virus, bacteria, and biomarker samplers

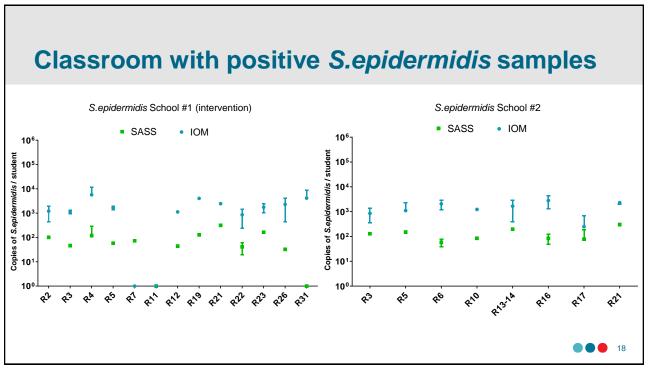
	SASS 3100	IOMs		
Filter	Polypropylene Electret Filter	Gelatin Filter		
Sampling time	33 min	At least 5 hours		
Sampling flow rate	300 lpm	2.5 lpm		
Total m ³ /sample	9.9 m³	0.75 m ³		
		13		

13

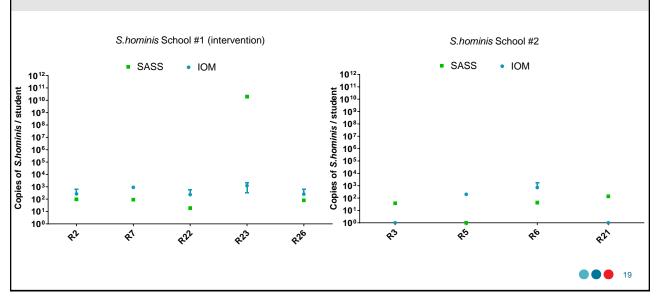
Viruses


Target	Detected*
Rhinovirus	No
Rotavirus	No
Adénovirus	No
Sars-Cov-2 (orf-1b)	No


* Detection limit: SASS 3100 = 3.8 copies / m³ IOMs = 50 copies / m³

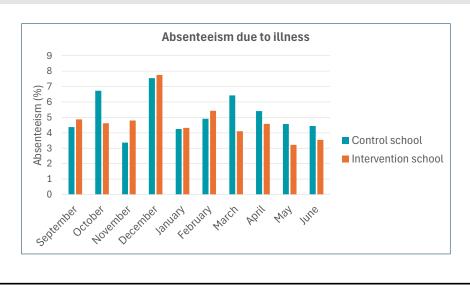

Bacteria and bio-markers

Та	Detected	
	Streptococcus salivarius	No
Upper respiratory tract	Streptococcus sanguinis	No
	Neissaria subflava	Yes (1x)
	Staphylococcus epidermidis	Yes
Human skin	Staphylococcus hominis	Yes
	Staphylococcus aureus	No



Τ,

Classroom with positive *S.hominis* samples



19

Ventilation, particle, and bio-marker

Arithmetic Mean - 15 school days in March 2024	ACH	PM 2.5 concentration (μg/m³)
Classrooms in control school with positive biomarker samples	0.89	1.47
Classrooms in control school without positive biomarker samples	0.76	1.11
Classrooms in intervention school <u>with</u> positive biomarker samples	0.75	0.70
Classrooms in intervention school <u>without</u> positive biomarker samples	0.68	0.83

Absenteeism due to illness Sept 2023 – June 2024

21

Summary

- The indoor CO₂ concentrations were dependent on the presence of occupants. The outdoor air ventilation rates can be estimated based on the decay of CO₂ concentration after school. The two schools had comparable outdoor ventilation rates (~0.7 ACH). More data points (locations and time) can help address uncertainties.
- The outdoor particle sources play a significant role in deciding the indoor particle concentrations in classrooms with exterior walls. Caution should be taken when replying on indoor PM2.5 concentration (only) to represent airborne transmission risk in real world buildings.
- The PAC units in the intervention school delivered equivalent clean air at a rate of ~2.5 ACH to the classrooms and reduced indoor PM2.5 concentration (compared to the PM2.5 concentration in the control school).
- The use of PAC units in the intervention school didn't appear to reduce the students' absenteeism due to illness or the presence of bacteria and biomarker indoors.

