

Background and context Renewable VC – Previous Work and Challenges

www.mtu.ie

- Limited work focusing directly on the SPF of VC systems (O'Donovan et al. 2023, Yan et al. 2022, Holzer and Stern. 2019, Cremers et al. 2018)
- The scope of renewables should be outside of reversible heat pumps (Krazl et al. 2021).
- VC as a renewable had to overcome:
 - Cannot be a passive cooling (building insulation, green roof, vegetal wall, shading, thermal mass) not attenuation or demand reduction (section 2.6.2.1)
 - 2. Cooling without fans or pumps this excludes natural ventilation (section 2.6.2.2)
 - 3. Has to exclude ventilation for hygienic purposes cooling is **not intentional** (section 2.6.2.3)

Succeeding Together

Background and context Renewable VC – Seasonal Performance Factor

"The SPF is the Seasonal Performance Factor, which is a ratio used to measure the efficiency of cooling systems during the cooling season" – ENER/C1/2018-493

"Free cooling systems are cooling systems with the highest possible SPF values. In the context of the RED II, ,we propose to use the SPF of cooling systems as the main criterion to qualify the presence of cold source energy to potentially count as renewable cooling" – ENER/C1/2018-493

 $SPF = Q_{C Supply} / E_{INPUT}$

Succeeding Together

Background and context Renewable VC – Seasonal Performance Factor

www.mtu.ie

www.mtu.ie

"The SPF is the Seasonal Performance Factor, which is a ratio used to measure the efficiency of cooling systems during the cooling season" – ENER/C1/2018-493

"Free cooling systems are cooling systems with the highest possible SPF values. In the context of the RED II, ,we propose to use the SPF of cooling systems as the main criterion to qualify the presence of cold source energy to potentially count as renewable cooling" – ENER/C1/2018-493

SPF = Q_{C_Supply} / E_{INPUT}

Limits apply to be considered a renewable!

Succeeding Together

Background and context Ventilative Cooling as a Renewable

Policy background

"Where ventilation air is used as a heat transport medium for cooling, the corresponding cooling supply, which can be supplied either by a cooling generator or by free cooling is part of renewable cooling calculation." – Regulation (EU) 2022/759 (Venticool.eu)

Literature review

Table 1: Reported efficiency values from literature									
Author	Year	Ventilation Type	Metric	Value					
Cremers et al.	2018	MVC	SPF	3.7 to 9.8					
Holtzer and Stern et al.	2019	MVC	COP	24					
Yan et al.	2022	NVC plus heat pumps	COP	18.3					
Ol Danasana at al	2022	NVC	SPF	63					
O' Donovan et al.	2023	MVC	SPF	23					

Succeeding Together

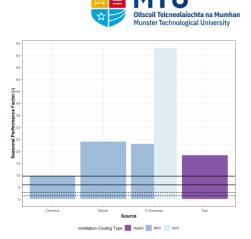
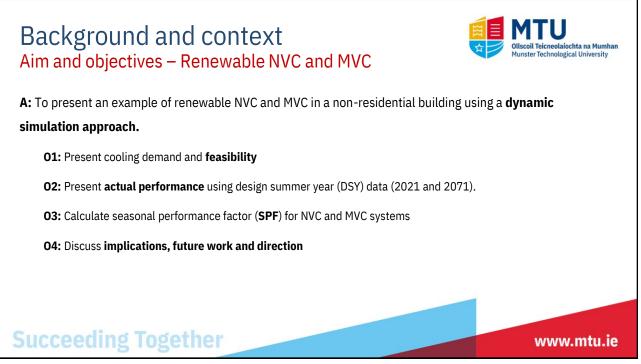
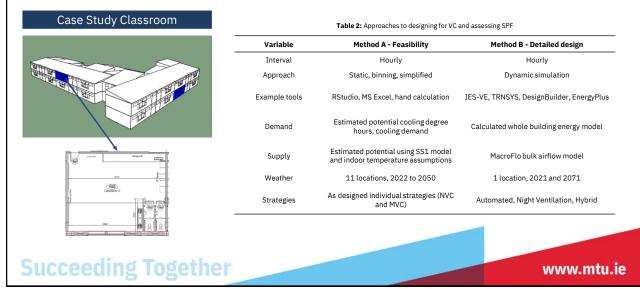



Figure 1: Maximum SPF values achieved in literature (Lines show thresholds according to Renewable Energy Directive EU and Ireland)

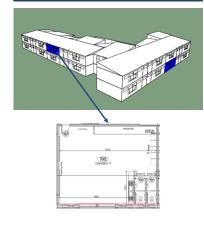
www.mtu.ie

5



7

Materials and Methods General Methodology



Materials and Methods General Methodology

Case Study Classroom

Method B - Detailed design	Method A - Feasibility	Variable
Hourly	Hourly	Interval
Dynamic simulation	Static, binning, simplified	Approach
IES-VE, TRNSYS, DesignBuilder, EnergyPlus	RStudio, MS Excel, hand calculation	xample tools
Calculated whole building energy model	Estimated potential cooling degree hours, cooling demand	Demand
MacroFlo bulk airflow model	Estimated potential using SS1 model and indoor temperature assumptions	Supply
1 location, 2021 and 2071	11 locations, 2022 to 2050	Weather
Automated, Night Ventilation, Hybrid	As designed individual strategies (NVC and MVC)	Strategies

Succeeding Together

9

Materials and Methods Case study and weather data

Figure 2: Image of primary school classroom type

Simulation Location: Dublin Two weather files: 2021 (DSY2) and 2071 (DSY2) Two strategies: Automated, Hybrid

Succeeding Together

www.mtu.ie

Table 3: Characteristics of case study classroom

Variable	Units	Value
Roof U-value	W/m ² K	0.6
Wall U-value	W/m ² K	0.21
Window U-value	W/m ² K	1.2
Effective air change rate	h-1	0.145
Floor area	m²	72
Volume	m ³	212
Heat loss co-efficient	W/K	69
Figure	2: NV opening configuration in	classroom

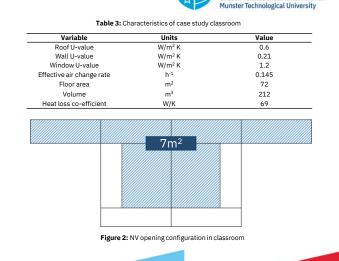

Materials and Methods Case study and weather data

Figure 2: Image of primary school classroom type

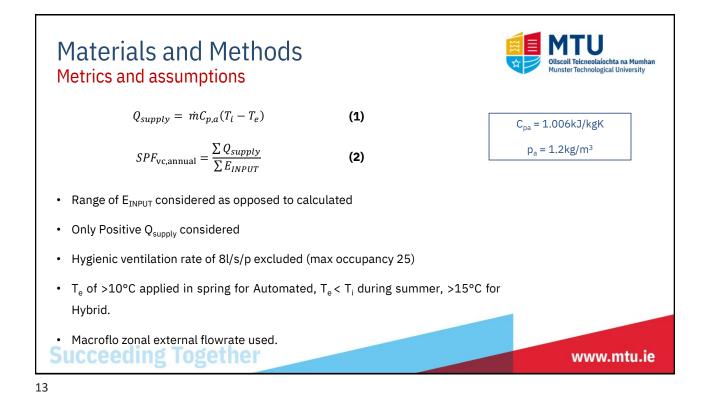
Simulation Location: Dublin Two weather files: 2021 (DSY2) and 2071 (DSY2) Two strategies: Automated, Hybrid

Succeeding Together

Materials and Methods NVC and MVC strategies considered

ID	Strategy Name	Day/Night Usage	Season	Tim	e	Operable Windows
AV	Automated Ventilation	Day	All year	09:00 a		All windows
				02:30 Daytime:	9am to	
ну	Hybrid Ventilation	Day/	All year	2:30p	om	All windows
		Summer Night	, at your	Night-time to 7a		
		able 5: E _{INPUT} values rep			Value	
	Reference	System ty	pe	Units		es reported
			pe			s reported 3 – 2.8
(A	Reference	System ty Hybrid sys	r pe stems	Units		
	Reference (Cho et al. 2021)	System ty Hybrid sys 18) NVC	r pe stems e change	Units kWh/m²/a	0	3 - 2.8
	Reference (Cho et al. 2021) Igency and Programme 20 Intos, Hopper, and Koloko	System ty Hybrid sys 18) NVC troni NVC + phase	stems change als	Units kWh/m²/a kWh/m²/a	0	3 - 2.8 ~1.2
	Reference (Cho et al. 2021) Igency and Programme 20 ntos, Hopper, and Kolokoi 2016)	System ty Hybrid sys 18) NVC troni NVC + phase materi	r pe stems e change als	Units kWh/m²/a kWh/m²/a kWh/m²/a	0	3 – 2.8 ~1.2 ~0.77

Succeeding Together


www.mtu.ie

Teicneolaíochta na Mumhan

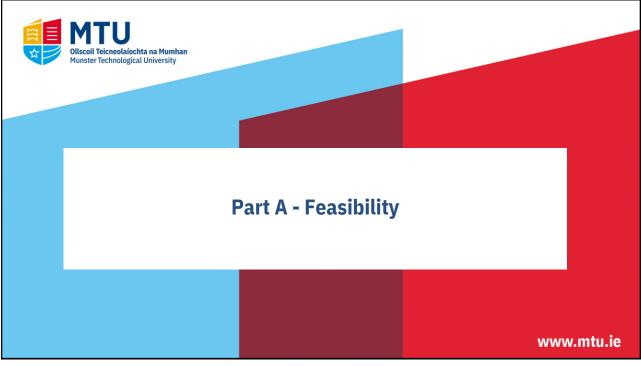
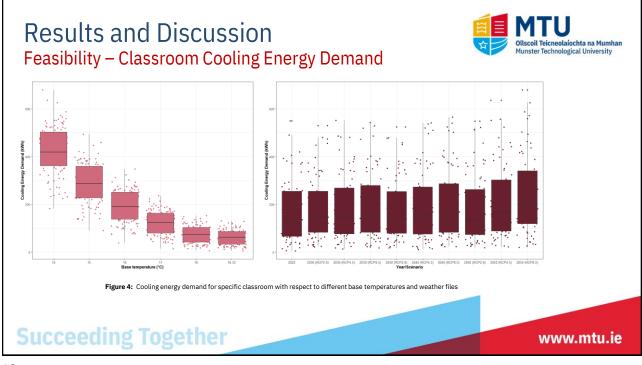
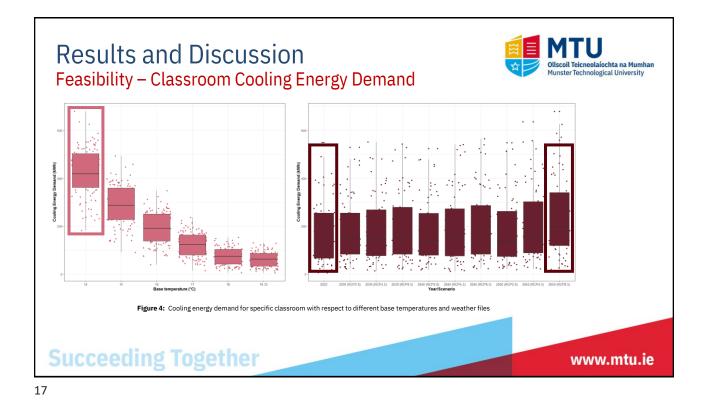
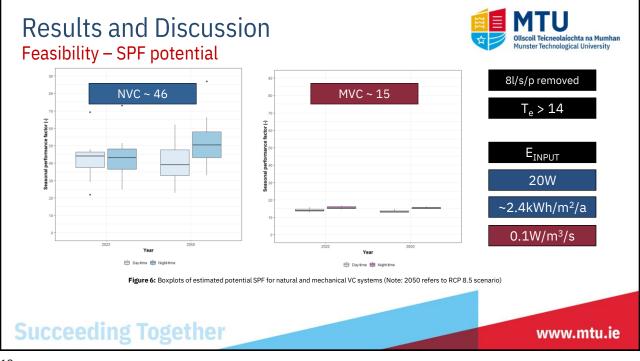
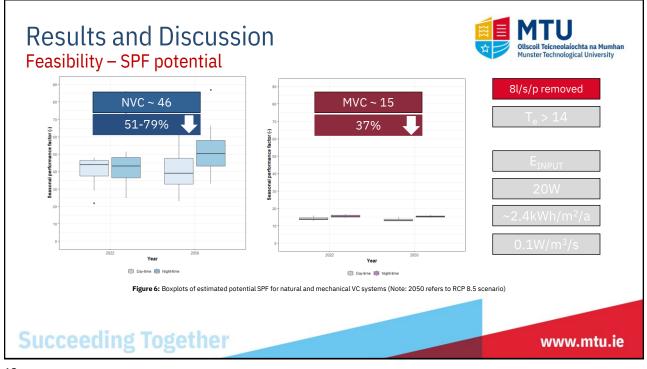


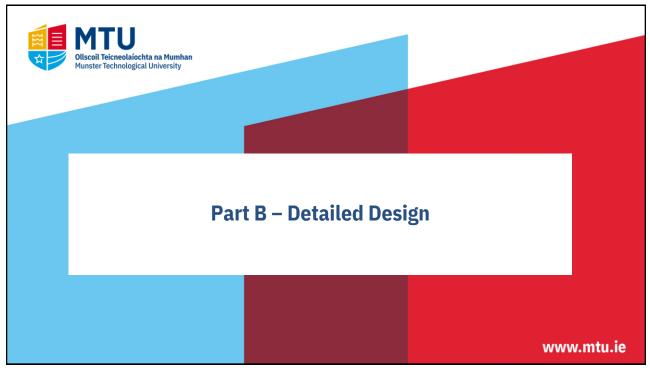
Figure 3 : HV system studied

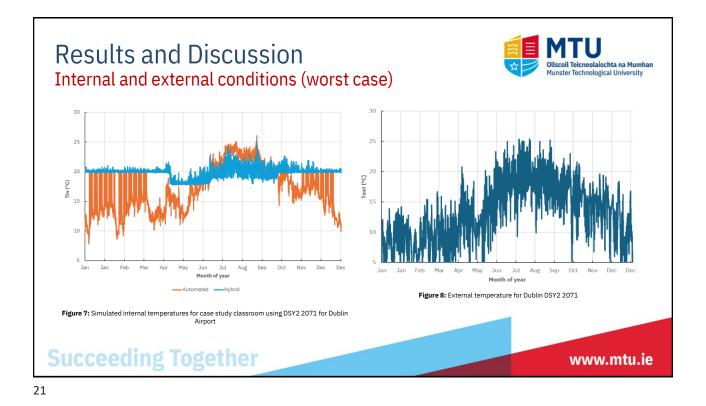

Day-time rate: 350l/s Night-time rate: 530l/s Power consumption: 30W











Results and Discussion SPF calculations

System	Year	Q _{supply} max (kWh)	Q _{supply} VC only (kWh)	E _{INPUT} MVC total (kWh)	E _{INPUT} MVC VC only (kWh)	E _{INPUT} NVC min (kWh)	E _{INPUT} NVC max (kWh)	SPF _{min} (-)	SPF _{max} (-)
A	2021 DSY	2883	1776	0	0	72	173	10.3	24.7
Automated	2071 DSY	3282	2300	0	0	72	173	13.3	31.9
	2021 DSY	3448	807	707	166	72	173	2.4	3.4
Hybrid	2071 DSY	3144	811	813	177	72	173	2.3	3.3

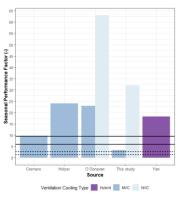


Figure 9: Maximum SPF values achieved in literature updated (Lines show thresholds according to Renewable Energy Directive EU and Ireland)

Succeeding Together

23

System

Automated

Hybrid

Results and Discussion SPF calculations

Year Qsupply (kWh) Qsupply (kWh) EINPUT total (kWh) EINPUT VC only (kWh) EINPUT VC why (kWh) EINPUT VC why (kWh) EINPUT kWh (kWh) SPF_min SPF_min	Та	ble 6: Calcu	lated seasona	l performan	ce factors for	different sys	stems		
2071 DSY 3282 2300 0 0 72 173 13.3 31.9	Year	max	VC only	MVC total	MVC VC only	NVC min	NVC max		
	2021 DSY	2883	1776	0	0	72	173	10.3	24.7
2021 DSY 3448 807 707 166 72 173 2.4 3.4	2071 DSY	3282	2300	0	0	72	173	13.3	31.9
	2021 DSY	3448	807	707	166	72	173	2.4	3.4
2071 DSY 3144 811 813 177 72 173 2.3 3.3	2071 DSY	3144	811	813	177	72	173	2.3	3.3

Succeeding Together

www.mtu.ie

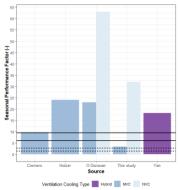


Figure 9: Maximum SPF values achieved in literature updated (Lines show thresholds according to Renewable Energy Directive EU and Ireland)

26

Results and Discussion SPF calculations

max

(kWh)

т	able 6: Calcu	lated seasonal	l performanc	e factors fo	r different sys	stems
X	Q _{supply}	Q _{supply}	E _{INPUT} MVC	E _{INPUT} MVC		EINPUT

total

(kWh)

VC only

(kWh)

SPFmin

(-)

NVC min NVC max

(kWh)

(kWh)

SPFmax

(-)

Automated	2021 DSY	2883	1776	0	0	72	173	10.3	24.7
Automated	2071 DSY	3282	2300	0	0	72	173	13.3	31.9
	2021 DSY	3448	807	707	166	72	173	2.4	3.4
Hybrid	2071 DSY	3144	811	813	177	72	173	2.3	3.3

• 30-38% reduction for NVC due to hygienic removal

VC only

(kWh)

• 74-77% reduction for HVC due to hygienic removal

Succeeding Together

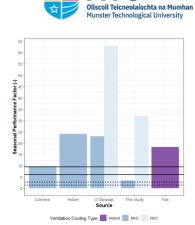
System

25

Year

Results and Discussion SPF calculations

Systen	n Year	Q _{supply} max (kWh)	Q _{supply} VC only (kWh)	E _{INPUT} MVC total (kWh)	E _{INPUT} MVC VC only (kWh)	E _{INPUT} NVC min (kWh)	E _{INPUT} NVC max (kWh)	SPF _{min} (-)	SPF _{max} (-)
Atomot	2021 DSY	2883	1776	0	0	72	173	10.3	24.7
Automat	2071 DSY	3282	2300	0	0	72	173	13.3	31.9
t to de set of	2021 DSY	3448	807	707	166	72	173	2.4	3.4
Hybrid	2071 DSY	3144	811	813	177	72	173	2.3	3.3


Table 6: Calculated seasonal performance factors for different systems

- 30-38% reduction for NVC due to hygienic removal
- 74-77% reduction for HVC due to hygienic removal

Succeeding Together

www.mtu.ie

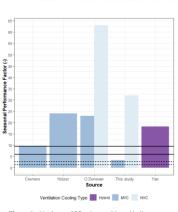
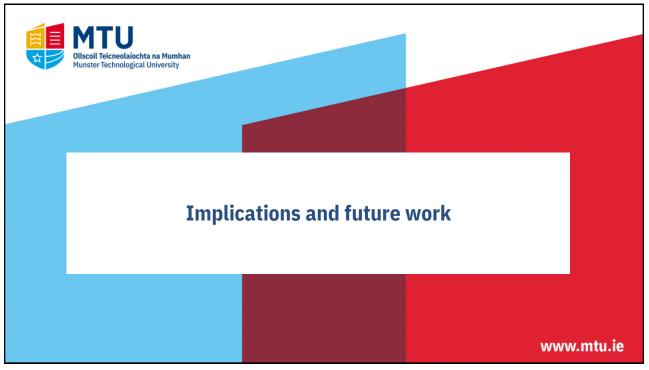


Figure 9: Maximum SPF values achieved in literature updated (Lines show thresholds according to Renewable Energy Directive EU and Ireland)

Ollscoil Teicneolaíochta na Mumhan Munster Technological University

Source
Ventilation Cooling Type Hybrid MVC NVC

Figure 9: Maximum SPF values achieved in literature updated (Lines show thresholds according to Renewable Energy Directive EU and Ireland)


Performance Factor (-)

	Та	ble 6: Calcu	lated seasona	l performan	ce factors for	different sys	tems		
System	Year	Q _{supply} max (kWh)	Q _{supply} VC only (kWh)	E _{INPUT} MVC total (kWh)	E _{INPUT} MVC VC only (kWh)	E _{INPUT} NVC min (kWh)	E _{INPUT} NVC max (kWh)	SPF _{min} (-)	SPF _{max} (-)
Automotod	2021 DSY	2883	1776	0	0	72	173	10.3	24.7
Automated	2071 DSY	3282	2300	0	0	72	173	13.3	31.9
t takada	2021 DSY	3448	807	707	166	72	173	2.4	3.4
Hybrid	2071 DSY	3144	811	813	177	72	173	2.3	3.3

- 30-38% reduction for NVC due to hygienic removal
- 74-77% reduction for HVC due to hygienic removal

Succeeding Together

<section-header>**Succeeding Together For each of the set o**

